BOWLING FOR FASCISM:
SOCIAL CAPITAL AND THE RISE OF THE NAZI PARTY*

Shanker Satyanath
NYU

Nico Voigtländer
UCLA and NBER

Hans-Joachim Voth
University of Zurich and CEPR

First version: June 2013
This version: May 2014

Abstract: Social capital is often associated with desirable political and economic outcomes. This paper connects a growing literature on the "dark side" of social capital with institutional change. We examine the downfall of democracy in interwar Germany. Using new data on Nazi Party entry in a cross-section of cities, we show that dense networks of civic associations such as bowling clubs, choirs, and animal breeders went hand-in-hand with a more rapid rise of the Nazi Party. Towns with one standard deviation higher association density saw at least one-third faster entry. All types of associations – veteran associations and non-military clubs, “bridging” and “bonding” associations – positively predict NS Party entry. Party membership, in turn, predicts electoral success. These results suggest that social capital aided the rise of the Nazi movement that ultimately destroyed Germany’s first democracy. We also show that the effects of social capital were more important in the starting phase of the Nazi movement, and in towns less sympathetic to its message.

Keywords: social capital, democracy, institutions, associations, networks

JEL Classification: N44, P16, Z10

* We thank Daron Acemoglu, Laia Balcells, Eli Berman, Sheri Berman, Johannes Buggle, Davide Cantoni, Nick Crafts, Joan Esteban, Ray Fisman, Akos Lada, Stelios Michalopoulos, Giacomo Ponzetto, James Robinson, Yannay Spitzer, Enrico Spolaore, Ann Swidler, Debraj Ray, James Robinson, Peter Temin, Romain Wacziarg, and David Yanagizawa-Drott for helpful comments. Seminar audiences at CUNY, CREI, the Barcelona GSE Summer Forum, and Harvard offered useful criticisms. We are grateful to Hans-Christian Boy, Muriel Gonzalez, and Michaël Aklin for outstanding research assistance. Voigtländer acknowledges financial support from the Hellman Foundation. Voth thanks the European Research Council.
1 Introduction

A large literature documents both the importance of institutions for economic outcomes and their persistence over time. Institutions are often shaped by political events at critical junctures in history (Acemoglu et al. 2008). Property rights, constraints on the executive, political participation, and freedom of expression and assembly can come into being in a short period of time. In this context, social capital is typically associated with the emergence and persistence of benign institutions and good economic outcomes. Tocqueville argued that a vibrant civic society formed the bedrock of American democracy; conversely Putnam (2000) concluded that a decline in social capital threatened it. A nascent literature shows that social capital is also associated with negative outcomes. Acemoglu, Reed and Robinson (2014) demonstrate that it can serve as a means of control, thereby entrenching the power of autocratic rulers: social capital can actually perpetuate poor governance. But can social capital have an even darker side? Can it also contribute to the decline and fall of existing democratic structures, thereby aiding and abetting the rise of autocracy – in other words, can a rich fabric of civic organization also lead to sharp declines in institutional quality?

In this paper, we study the role of social capital during one of the key discontinuities of the 20th century – the Nazi Party’s rise to power. In 1933, Germany went from a pluralistic, tolerant democracy to one of the most repressive dictatorships in history, with major economic, political, and humanitarian consequences. A vast literature has sought to explain the Nazi “seizure of power”. Answers currently range from a history of deep-rooted anti-Semitism (Goldhagen 1996) to the social changes engendered by German industrialization, and structural flaws of the Weimar constitution interacting with weak political leadership before 1933 (Bracher 1978). We emphasize a different channel – that Germany’s vibrant “civic society”, its dense network of social clubs and associations, facilitated the rise of the Nazi Party, both by bringing more people into contact with the party’s message and face-to-face with (convincing) members.

Mass membership was crucial for the Nazi rise to power. Long before it became a force at the polls, the Nazi Party developed a mass following of often fanatically devoted members. The electoral success of the NSDAP after 1930 would have been impossible

without massive organizational support by thousands of local chapters and hundreds of thousands of dedicated members who campaigned for the party all over Germany (Brustein 1998). The party’s vast size was also essential to get to the bargaining table for power in the early 1930s – thanks to its mass appeal, the party controlled a huge paramilitary force of storm troopers (SA). By 1932, it had grown so strong that, according to a confidential assessment by the Ministry of Defense, the SA had a good chance of defeating the regular German army in battle (Winkler 1987a). Our results suggest that social capital played an important role in the Party’s gaining control of such a powerful force.

To examine this issue empirically, we combine individual-level records of Nazi Party membership with information on civic associations from a cross-section of towns and cities from all over Germany. Using newly-collected data on over 100 cities, we demonstrate that the Nazi party grew more quickly where dense networks of clubs and associations existed. Figure 1 summarizes the basic pattern in the data: in towns and cities with a denser network of clubs and associations, Germans were more likely to enter the Nazi Party. We group locations into terciles based on association density; the higher association density, the more rapidly citizens joined the ranks of the Nazi Party. The effect is large, suggesting that moving from the lower to the upper tercile of association density raised annual entries from 22 to 37 per 1,000 inhabitants. All types of associations – veteran associations and non-military clubs, “bridging” and “bonding” associations – positively predict NS Party entry. Party membership, in turn, predicts electoral success. Our results are robust to a wide range of alternative specifications and group definitions. We find similar results when we use an IV-strategy based on deep-rooted differences in social capital. Our results strongly suggest that social capital in the form of a rich associational life had major corrosive effects in Weimar Germany.

The historical record suggests that associations facilitated Nazi recruitment by helping to spread the party’s message, and by increasing trust in its intentions and officials.

3 The regular armed forces were limited to 100,000 as a result of the Versailles Treaty. Realization that the NSDAP could not be repressed by violent means led the head of the army, Gen. Streicher, to try and strike a deal with the party’s moderates in December 1932. This was one of the first steps in a process of mutual accommodation between right-wing parties and the Nazis Party that culminated in the latter’s entry into government in 1933.

4 For cities in the highest tercile of association density, the average entry rate per 1,000 for the period as a whole was 0.74; in the lowest, it was only 0.44/1,000 – 40 percent lower. Since our sample comprises approximately 2% of all entries, the actual level effects are substantial: On average over the period 1925-33, the party had 37 vs. 22 annual entrants (per 1,000 inhabitants) in cities with upper vs. lower-tercile association density.
We also examine under what conditions social capital becomes corrosive, exploiting within-sample variation in the quality of institutions. Interwar Germany was a federal state, and institutions differed across space. We document an interaction effect between poor governance and social capital. Our results also indicate that only the Nazi party benefitted from social capital in Weimar Germany; we present a small model that rationalizes both our main finding and the fact that the NSDAP profited more than other parties.

Our findings complement and extend the recent results by Acemoglu, Reed, and Robinson (2014), who conclude that powerful chiefs in Sierra Leone “build social capital as a way to control and monitor society”. In addition to entrenching autocratic rulers, social capital may also contribute to the rise of autocratic regimes in the first place, by providing a pathway for radical parties to spread and garner support. These findings modify our understanding of the relationship between the rise of dictatorships and social capital. Theories of “mass society” and the origins of totalitarianism in the spirit of Ortega y Gasset (1993), Arendt (1973), and Bendix (1952) argued that economic modernization uprooted individuals and dissolved traditional social ties. Confronted with a major economic crisis, the faceless masses could then be easily swayed by demagogic agitators like Hitler, or by dreams of a Communist utopia. In line with the predictions of mass society theory, Shirer (1960a) saw marginal loners as the core group of party supporters; Stern (1972) concluded that German civic society was weaker than in other European countries, and that the country lacked “the kind of voluntary, civic activity that attracted their English and American counterparts.” In other words, an important strand of the literature on the rise of totalitarianism has argued that the weakness of German civic society facilitated the rise of the Nazis. Our results demonstrate that the opposite is closer to the truth. In this way, we corroborate the conjecture by Berman (1997), who had argued that Weimar Germany as a whole actually had comparatively dense networks of clubs and associations, and that the NSDAP successfully exploited these structures.

We connect with work on social dynamics and network effects in politics. Zuckerman (2005) highlights the “social logic of politics” – how group interactions among

5 In this sense, adverse political consequences need to be added to the list of negative aspects of high social capital in social settings, such as social exclusion and its enabling role for organized crime (Durlauf and Fafchamps 2005; Portes, and Landolt 1996; Field 2003).

6 Berman did not test this argument empirically, and could thus not exclude the opposite: that without associations, Weimar would have collapsed even earlier. Our empirical investigation of patterns in a cross-section of German cities allows us to make progress.
citizens spread new political ideas. Acemoglu and Jackson (2011) show theoretically how influential individuals can shape beliefs in networks. Lohmann (1993) emphasizes information revelation through political activism, which provides insight into the advantages and disadvantages of participation in a new movement. Madestam et al. (2013) examine these competing theories empirically, analyzing the rise of the Tea Party in the US. They find evidence for a “social multiplier”, with many more people favoring a radical movement if they see support in large numbers.

Relative to the existing literature, we make the following contributions: Our paper is the first to show on the basis of detailed cross-sectional data that social capital can undermine and help to destroy a democratic system. This adds a new dimension to the evolving literature on the “dark side” of social capital. Second, we demonstrate that the positive association between social capital and the rate of joining an extreme party is not simply a reflection of pre-existing differences in ideological outlook. Our results are equally strong for bowling, singing, and animal breeding clubs etc. This implies that even “bridging” social capital can have negative effects. Third, we find that association density did not only boost Nazi Party membership, but also helped the party win more votes. Fourth, we show that social capital had the strongest effects in the early phase of the Nazi movement, and in towns less sympathetic to its message; we use a small model to rationalize these findings. Finally, our results show an important interaction with institutional quality. In the state of Prussia – which featured stronger institutions compared to the rest of Weimar Germany – the link between social capital and Nazi Party entry was markedly weaker.

The paper proceeds as follows. Section 2 discusses the historical context. Section 3 presents our data and derives empirical predictions. Section 4 summarizes the main empirical results. Section 5 presents robustness checks and IV-estimates, and Section 6 discusses the implications of our findings. Section 7 concludes.

2 Historical Context and Data

In this section, we briefly discuss related literature on the rise of the Nazi Party. We then describe the social origins of Nazi Party members and the role of associations in Germany after 1800. We also summarize earlier historical research on the link between association membership and Nazi Party entry.
2.1 Related Literature on the Rise of the Nazi Party and Fascism in Europe

We contribute to the large literature seeking to explain the Nazi Party’s success at the polls and as a mass movement. Initial theorizing focused on “isolated members of the masses”, marginal loners for whom the party represented a group in which they finally belonged (Shirer 1960). An alternative literature interpreted the rise of the Nazi Party as a form of class conflict (Winkler 1987b). Recent research on voting behavior emphasizes “ordinary economic voting” – with the working poor particularly susceptible to the NS message (King et al. 2008).

Our paper is closely related to research emphasizing group membership as a pathway to NS involvement, which gained wider currency from the 1970s onwards (Linz 1976). This strand of the literature assigns crucial importance to the “conquest of the bourgeois infrastructure” (Mommsen 1978), i.e., the infiltration of existing high-level national and regional lobbying groups (Verbände) representing farmers and other special interests. Berman (1997) pointed out that Weimar Germany as a whole had many civic associations. She argues that “… had German civil society been weaker, the Nazis would never have been able to capture so many citizens for their cause …” (Berman 1997), but she offers no systematic evidence that the NSDAP spread faster where there were more associations. Koshar (1987), in a detailed study of Marburg, demonstrated that NS members were active in many local groups. Anheier (2003a) showed how well-connected individuals acted as political entrepreneurs. Using their social connections and professional standing, they attracted new members for the party, leading to the founding of new local chapters.

Our work also follows earlier historical research on interwar politics in Europe. Riley (2010; 2005) analyzes the role of civic associations and the rise of fascism in Italy and Spain. In Italy, the North – with its denser networks of clubs and societies – was home to more fascist cells. In Spain, there is no clear-cut relationship with support for the Franco regime. Riley argues that in countries without strong hegemonic organizations – i.e., well-established parties – social capital can undermine the development of democracy. In a similar spirit, Wellhofer (2003) examines the rise of fascism in Italy, focusing on election

7 Abel (1938) analyzed autobiographical notes of NS members submitted for an essay competition “Why I became a Nazi”.
8 The vast literature on voting results for the Nazi Party cannot be surveyed here. Important contributions include (Childers 1983; Hamilton 1982; Falter 1991; King et al. 2008).
results. In contrast to Riley, he finds that civic society offered some protection from the rise of fascism, but only in certain elections.9

2.2 Nazi Party Membership

The Nazi Party deliberately aimed to compete with leftwing parties for mass support, replacing the class-based ideology of the latter with nationalist and racist ideals (Shirer 1960b). From the party’s early days, Hitler and his associates viewed organization-building as crucial for the rise to power. Becoming a mass movement was an aim in its own right, in addition to scoring electoral successes. Initial growth was slow, but eventually, membership grew to 850,000 members in January 1933 – on par with the Social Democratic Party (SPD).10

Local chapters (Ortsgruppen) provided the organizational foundation for the Nazi Party’s rise in any one location. Local leaders of party chapters were in charge of coordinating member activities, recruiting new members, collecting dues, and organizing social, cultural, and political activities. In towns without a local NS chapter, individual members could also join. These “single members” often formed the nucleus of newly founded local chapters.

Who joined the Nazi Party and for what reasons has been the subject of a major research effort. Initial theories emphasized the party’s appeal for marginalized groups such as unemployed workers, and marginalized individuals; Marxists argued that the petty bourgeoisie – threatened by a possible slide into the proletariat – gave overwhelming support to the Nazis (Heiden 1935; Stephan 1931). From the 1970s onwards, when the NS membership files were partly computerized, these predictions could be confronted with data.

In the early years, the party drew a disproportionate share of its members from the upper ranks of the Mittelstand.11 Blue collar workers were substantially underrepresented relative to the population. In the party’s early years (1919-23), only 22.8% were laborers. This compares with a proportion of 53% in the Reich as a whole (Madden and Mühlberger 2007). As the depression wore on, the share of workers increased. By January 1933, the

9 Neither paper exploits cross-sectional variation in association membership quantitatively to predict entry rates into the fascist party.
10 Childers (1983). The NS membership figure was also nearly three times higher than Communist membership in 1932.
11 University students were amongst the first groups to sign up. This contradicts the hypothesis of the petty bourgeoisie being the first to be drawn to the party. Lower middle class Germans did however join in increasing numbers in later years (Kater 1983).
workers’ proportion in the party had reached 31.5% (Mühlberger 2003). The over-representation of white collar workers was common to most parties; even in the Social Democratic Party (SPD) and the Communists (KPD), the educated middle classes constituted a much higher proportion than in the population at large. In terms of the class composition of its members, the Nazi Party was similar to other large parties (Volksparteien - people’s parties) such as the SPD.

2.3 Associations in Germany after 1815

The right to free assembly, and to form associations, was hotly contested after the Restoration of the old political order in 1815. Until 1848, the German territories repressed most forms of bourgeois sociability. Both associations and larger gatherings needed approval by the authorities, which were routinely denied. Gymnast associations – spreading in number and influence during the Napoleonic Wars – were outlawed from 1820 until 1848. Singers’ associations never suffered a blanket ban, but were closely watched. Student fraternities (Burschenschaften) also grew after 1815. They agitated in favor of German unification. Following a political murder, most of the student fraternities were suppressed. Before 1848, Germany’s early associations were both liberal and nationalist in character; they mostly favored the formation of a unified fatherland and an end to the rule by princes over often tiny territories, as well as parliamentary representation, a bill of rights, and freedom of assembly, speech, and religion.

Both the singing and the gymnast associations contributed to the 1848 revolution, but their exact influence is hard to gauge (Obermann 1963). After the failed revolution, which was closely followed by an end to many of the earlier prohibitions, associations spread throughout the country. At the same time, many of them became increasingly apolitical, focusing on folklore and local traditions (Düding 1984). In addition to the original associations, new ones brought together pigeon breeders, rabbit owners, stamp collectors, and supporters of a plethora of other causes. Student associations on the other hand became increasingly nationalistic and militarist, and several of them adopted xenophobic and anti-Semitic ideas in the late 19th century (Haupt 1925).

12 The movement split into a political and a non-political branch, and never recovered its wider political significance (Wenzcke 1965).

13 Vereinsnationalismus (nationalism of the associations) was neither xenophobic nor militaristic; it mainly emphasized the need to unify all Germans in a nation state similar to France and England, where all could interact as equals (Dunn 1979). The liberal nationalism of early 19th century Germany is therefore fundamentally different in nature to the nationalism fostered by the actual unification of the Reich under Bismarck in 1871 (Eley 1980).
During the interwar period, membership in associations soared. The main singers’ association’s membership tripled, to 1.2 million; the German gymnast association registered a 50% rise in membership. Most associations saw themselves as apolitical, and did not support particular parties. In the Catholic Rhineland, all ranks of societies often joined Carnival associations, organizing revelry during the “silly season”. While many organizations were explicitly Catholic or Protestant, almost every town and city also had a large number of non-denominational associations (Reichardt 2004). Associations reflected the views and biases of German civic society in general; where politics were not deliberately kept out of the club, there was a society for every political grouping. Workers gathered in workmen’s singing associations; Communists reminisced about their frontline experiences together; fervent nationalists had their own societies to discuss the fate of Germany’s colonies; and enlightened Germans organized a society for reducing anti-Semitism (Zeiss-Horbach 2008; Koshar 1986).

2.4 Associations and Party Entry

A number of regionally-based case studies have analyzed the relationship between the Nazi Party and local clubs and associations. One thesis holds that Nazi activists deliberately targeted clubs and associations to hollow them out (“Unterwanderung”). A second, related view is that local chairmen and other opinion leaders increasingly converted to the Nazi creed, and hence induced other members to follow (Zofka 1979). Finally, some scholars have argued that it was not the strength of Weimar’s civic society, but its increasing weakness after 1930 that provided an opening for Nazi Party’s message (Heilbronner and Schmidt 1993). The testable prediction of all interpretations is that towns and cities with denser social networks should have seen more frequent Nazi Party entry – partly because the Nazi Party targeted associations deliberately, and partly because its folkloristic rituals and nationalist outlook was similar to everyday practice and attitudes in local clubs (Bösch 2005).

A close reading of the historical record strongly supports a tight relationship between associations and Nazi Party entry. For example, Koshar (1986) describes the case of Emil Wissner, a salesman in Marburg. He was a member of a white-collar employee association (from 1921), and active in two gymnastics clubs (from 1904). He joined the Nazi Party in 1929, and actively used his position to proselytize for the party, winning many new

14 Noakes (1971). It is interesting that the NSDAP, once in power, used similar tactics when trying to garner support amongst German immigrants to the US (Wilhelm 1998)
members. Kosher’s work shows that new Nazi Party members in Marburg had on average more association and club memberships than non-joiners. Similarly, (Anheier 2003b) analyzes single members – entrepreneurial NS Party members who did not join through a local chapter, and often established a bridgehead for the movement. They succeeded on a vastly greater scale in founding new party chapters where they had numerous pre-existing affiliations.15

Abel's (1938) analysis of NS member autobiographies underlines that recruitment often succeeded in a context of pre-existing affiliations. A bank clerk was a member of the youth movement that emphasized outdoor activities, music, and hiking (\textit{Wandervogel});16 he called it his “personal preparatory school for National Socialism” (Abel 1938). After drifting into an anti-Semitic association, he eventually joined the NSDAP. A soldier recounts how after the war, he joined a variety of associations, including the \textit{Jungdo},17 an “association of nationally minded soldiers”, and the \textit{Stahlhelm}.18 Eventually, he joined the Nazi Party. Personal interaction with Party members often worked wonders in convincing skeptics. One member recounts how he

“…became acquainted with a colleague of my own age with whom I had frequent conversations. He was a calm, quiet person whom I esteemed very highly. When I found that he was one of the local leaders of the National Socialist party, my opinion of it as a group of criminals changed completely…”

Zofka (1979) describes how in small-town Bavaria, the NSDAP succeeded in recruiting two local "opinion leaders" from the competing BVP (Bavarian People's Party) in 1931/32. Given their multiple memberships in local associations and the prominent role of the new members – who were active in the local firefighting brigade, the gymnast association, and the theatre club – the NSDAP received a major boost. Reflecting the importance of membership contacts and personal connections, the NS \textit{Gauleiter} (regional leader) for Hannover, Bernhard Rust, argued that

15 Single members with four or more civic society connections were 18 times more likely to successfully establish a local branch of the Nazi Party than those with no connections at all – and still three times more likely than party members with only one association membership (Anheier 2003b).
16 The \textit{Wandervogel} (German for migratory bird) had a strong romanticist and anti-authoritarian bend. While nationalistic in some aspects, it is seen by some as a precursor of the hippie movement. It was outlawed after 1933 (Stachura 1981).
17 A national-liberal youth group, it was anti-monarchist and favored reconciliation with France. The association was also anti-Semitic and elitist (Wolf 1972).
18 Literally, “steel helmet” – a veterans association with mostly nationalist aims (but not affiliated or allied with the Nazi Party until the very end of the Weimar Republic).
“personal canvassing is the movement's most effective weapon. Branch leaders must ... examine the relationship of individual members to relations and colleagues ... and set them suitable canvassing tasks.” (Noakes 1971, p. 206).

While not every party member was recruited via clubs, the Nazi Party successfully targeted pre-existing social networks to spread its message. Whenever the strategy succeeded, the importance of personal connections and trust is readily apparent.

3 Data and Empirical Strategy

In this section, we describe our newly collected data. We also present a small model that allows us to derive testable predictions.

3.1 Data

We hand-collected data on association density for 111 German towns and cities located on the territory of modern-day Germany. The sources for information on associations are town and city directories listing “useful contacts”, from local banks and service providers such as dentists to local clubs and associations. Printed and distributed in a small area, city directories often only survived in the local city library or archive. We wrote to all towns and cities with a listed archive or public library. If directories for different years survived, we used the average number of clubs for all available years in the 1920s. We collect data on 8,661 associations. Of these, 49 percent were sports clubs, choirs, animal breeding associations, or gymnastics clubs. Military associations accounted for another 14.3 percent of the total. All associations and their frequencies are listed in Table A.17.

Figure 2 presents the geographical distribution of our sample. Data come from all parts of Germany – cities as far North as Kiel and as far South as Konstanz are included; the sample covers the entire country from East to West. The figure also shows that towns and cities with high vs. low association density are relatively evenly distributed. To examine data representativeness, we use socio-economic controls from the 1925 and 1933 censuses. These provide data on occupational composition, religious affiliation, and (for towns and cities in the formerly German areas of Eastern Europe rarely preserved marginal library holdings such as city directories – and war damage in many of the relevant cities (Königsberg, Breslau) was massive. We therefore decided to focus on the territory of modern-day Germany.

20 We used central directories of city and county archives; the two main directories used are http://home.bawue.de/~hanacek/info/darchive.htm#AA and http://archivschule.de/DE/service/archive-im-internet/archive-in-deutschland/kommunalarchive/kommunalarchive.html. From this list, our dataset comprises all locations with surviving directories listing associations in the 1920s. For many towns and cities, however, this information was lost, destroyed during the war, or it did not exist in the first place. Table A.16 in the appendix lists all towns and cities in our sample.
1933) unemployment rates. In addition, we draw on voting results from King et al. (2008). Table 1 compares the national averages with the dictionary sample. By construction, our sample is more urban than the national average. Average population size in our sample is 92,900; in the country as a whole, it was 13,000. The employment structure is broadly in line with the aggregate: In the Reich as a whole, 46% of employees worked in blue collar jobs; in our sample of cities and towns, 52% did so. Unemployment reached 18.6% in Germany as a whole in 1933. In our sample, it is higher by 9 percentage points – driven by a more urban environment, with more volatile employment. This difference is much smaller when comparing our sample to the average German city, which had an unemployment rate of 25% in 1933.

In terms of political preferences, our city sample is broadly representative. NS votes in March 33 were 39% of the total; in the Reich as a whole, the number is 44%. In line with the slight overrepresentation of workers in our sample, there is also a higher share of KPD and SPD voters than on the national scale. These differences in election outcomes become minuscule when comparing our sample to the urban averages. Next, Catholics are over-represented. They constituted 32% of the Reich’s population, but in our sample, they are 39.7%.21

To calculate rates of entry per location, we use the computerized sample of NS members compiled by the universities of Berlin and Minnesota (Schneider-Haase 1991). The universe of membership cards is 11.6 million strong.22 The sample contains information on 42,018 membership cards drawn in 1989, and comprises only pre-1933 party entries. We matched our directory data with the Ortsgruppe in the Berlin-Minneapolis database. This identifies 6,553 members who joined before 1933, or 15.5% of all digitized cards, which closely resembles the population share of our sample: 14.8%.23

Rates of Nazi Party entry varied over time. They were stable or declining between

21 This is due to the fact that the more Catholic southern areas of Germany, where destruction from bombing raids was less, are oversampled in our data. Less bomb-damage probably facilitated the survival of city archives and library collections. However, this does not affect our findings. Below, we show that our results hold equally in Catholic and Protestant areas.

22 This includes party entries after 1933. The party kept two cards for every member – one for the central register originally ordered by name, the other initially ordered by geographical area (but later organized alphabetically, too, by the US authorities).

23 The 111 towns in our sample had 9.3 million inhabitants in 1925, compared with a total population of Germany of 62.4 million.
1925 and 1927, before rebounding sharply and rising after 1928. After January 1933 – when the Nazi Party entered into government – entry rates into the party jumped. Because the party feared it would be overwhelmed by the influx of opportunistic members, it banned new entry from April 1933. Throughout, the cross-sectional dispersion is high, with many towns and cities showing almost no entry into the Nazi Party, and others recording fairly high rates of entry (see for example Figure A.7 in the appendix).

One important concern is balancedness. How similar are the towns and cities that had above/below average densities of associations? In Table 2, we use voting results for the last pre-World War I election as an indicator of ideological outlook. We also add interwar data on the religious composition of the population, as well as socio-economic characteristics. Overall, there are few significant differences. Votes for nationalistic parties in 1912 show a mixed pattern: The NLP (National Liberal Party) is underrepresented in areas with many associations, whereas the DKP (German Conservative Party) is overrepresented. Later, in Weimar Germany, areas with high association density had slightly fewer blue-collar workers. The share of Jews was relatively similar, while there was a lower share of Catholics in towns and cities with more associations. Since blue-collar workers and Catholics (as compared with Protestants) were less inclined to support the Nazi Party (Childers 1983), this may stack the odds in favor of finding a link between social capital and NS entry. We therefore include both variables in our set of baseline controls. Next, cities with high association density had only half the population of their counterparts with many associations. We add city population to our baseline controls. At the height of the Great Depression, locations with more civic associations recorded lower unemployment rates, and fewer people were on welfare. Thus, if Nazi Party entry reflected a form of economic protest, this would introduce a downward bias in our main

24 The Berlin-Minneapolis dataset changes sampling methodology after 1930. Before 1930, entrants were oversampled deliberately to raise the sample size when the party was still small. Since this affects each location in the same way, it does not change cross-sectional differences within any given year. To allow for comparability of coefficients for early and late party entry, we interpret magnitudes in terms of standard deviations (beta coefficients). Finally, to calculate aggregate entry rates (such as in Figure 1, or when interpreting absolute coefficient sizes), we use a correction based on Kater (1980), who drew a smaller but intertemporally consistent sample. We explain this in Appendix C, where we also show that our regression results hold when correcting for oversampling, or when standardizing entry rates in each year before computing location-specific averages.

25 This difference is probably also driven by the fact that we observe the number of associations in each city, but not the overall members.

26 In addition, we carefully check that different city sizes do not drive our results, by comparing similar-sized cities with high and low association density in the robustness section below.
analysis. Similarly, there are fewer WWI veterans in high-association cities – who were also more inclined to join the Nazi Party. Finally, there are only minor differences in income (proxied by tax payments) and social insurance pensioners. Overall, there is little reason to believe that socio-economic or ideological characteristics pre-disposed cities with numerous societies and clubs towards the Nazi Party.

For our main analysis, we only use the 103 cities with more than 5,000 inhabitants (in 1925), i.e., we drop 8 small cities. This is for two reasons. First, in small towns people typically know and interact with each other independent of clubs or associations. Second small towns have a high signal-to-noise ratio, because it becomes increasingly difficult to find NS members in any one locale in the digitized subset of membership records. In Appendix D we show that our results are robust to using all cities in the sample.

3.2 Framework for Empirical Analysis

We begin by conceptualizing the link between association membership in any one location and party entry rates. The aim is twofold – to derive testable implications that can be taken to the data, and to clarify how the link between association density and entry rates might have worked.

In each city, locals support political parties. We assume that each individual has to choose one party. Not supporting any party is a possibility, too. In addition, citizens can be members of associations. Association density varies exogenously across cities. We are interested in the probability that an individual \(j \) who is initially politically neutral chooses to support party \(i \). For simplicity, we use a static setup with one period. Individual \(j \) makes a number of acquaintances – some connections arise at random, and others arise via associations. Afterwards, \(j \) makes a decision which party to enter. The probability of supporting party \(i \) is affected by how many supporters of this party were among the acquaintances of \(j \).

Denote as \(m_r \) the number of acquaintances that person \(j \) is exposed to at random. The city-wide proportion of supporters of party \(i \) is given by \(p_r(i) \). In expectations, \(j \) meets \(m_r p_r(i) \) party supporters by chance. In addition, \(j \) meets \(m_a \) acquaintances via associations, where \(m_a \) reflects local association density – the denser the local network of

27 Supporting a party does not necessarily have to result in formal membership. Under the assumption that more local supporters translate into a higher number of party entries, our model applies to both party membership and election results.
associations, the more encounters occur non-randomly. We assume that associations are not politically biased, so that supporters of any party can join them.

The proportion of association members that are also supporters of party i is given by $p_{a}(i)$. Therefore, individual j meets (in expectation) $m_{a}p_{a}(i)$ supporters of party i via associations. In order to translate the frequency of encounters into probabilities of party support, we use a simple linear setup. We assume that the probability that j will choose party i is given by:

$$P_{P_{P}(i)} = m_{r}p_{r}(i) + m_{a}p_{a}(i)$$

where $m_{r} + m_{a}$ is the number of total acquaintances that j makes. We allow the proportion of party supporters in associations to differ from their population counterpart: $p_{r}(i) \neq p_{a}(i)$. That is, associations can in principle be completely free of party supporters, but they can also host disproportionately more supporters of some parties than others. We analyze the effect of association density on support for a party by deriving the marginal effect of m_{a} on $P_{P_{P}(i)}$:

$$\frac{\partial P_{P_{P}(i)}}{\partial m_{a}} = \frac{m_{r}[p_{a}(i) - p_{r}(i)]}{(m_{r} + m_{a})^{2}}$$

This expression is positive if $p_{a}(i) > p_{r}(i)$. In this case, higher association density fosters support for party i. Intuitively, if supporters of party i are overrepresented in associations, j is relatively more likely to meet them in an association than at random. Thus, more association-based interactions (higher m_{a}) will favor party i. Crucially, if a party is relatively large (i.e., it has a high proportion $p_{r}(i)$ of supporters in the population), then it needs a very high representation in associations in order to benefit from higher association density. In other words, large parties can rely on their existing base of supporters and members in order to attract new entries. Denser associations may actually work against large parties if they increase the proportion of encounters with supporters of other parties, i.e., if $p_{a}(i) < p_{r}(i)$.

Conversely, a new party with initially few supporters (small $p_{r}(i)$) can achieve $p_{a}(i) > p_{r}(i)$ more easily, guaranteeing that (2) has a positive sign. Intuitively, small parties cannot rely on a large stock of existing supporters and members to attract new ones.

28 Note that if $p_{r}(i) = p_{a}(i)$, i.e., if party i’s representation in associations exactly reflects its membership proportion in the city overall, then $P_{P_{P}(i)} = p_{r}(i)$. That is, associations do not matter in this case. On the other hand, if $p_{r}(i) \neq p_{a}(i)$, association density in a city will affect party entry.
Instead, they can exploit encounters that occur within associations. By strategically raising \(p_a(i) \), party \(i \) can exploit associations to grow its own support and membership. These effects will be amplified the greater the share of social contacts provided by clubs and societies \((m_a) \).

The Nazi Party was very small in the early and mid-1920s. It also actively sought to exploit local associations to attract new members (Anheier 2003). Therefore, \(p_a(i) > p_r(i) \) probably holds for the early years of the Nazi Party. This leads to the following testable predictions:

P1. Association density \(m_a \) is positively correlated with Nazi Party entry and political support.

P2. The marginal effect of \(m_a \) is greater in the Nazi Party’s early days. Later, once a location contains a higher share of Nazi Party members, the effect of association density on Nazi Party entry declines in size.\(^{29}\)

P3. Cities with a higher initial proportion of supporters for the Nazi Party (higher \(p_r(i) \)) should show a smaller effect of association density on membership (because the difference \(p_a - p_r \) is smaller for any given \(p_a \)).

To examine whether our data support these predictions, we estimate:

\[
NSENTRY_i = \alpha + \beta ASSOC_i + \gamma X_i + \epsilon_i
\]

where \(NSENTRY_i \) is entry into the Nazi Party in location \(i \), \(\alpha \) is a constant, \(ASSOC_i \) are measures of social capital, and \(X_i \) is a vector of controls. P1 predicts \(\beta > 0 \) when estimating (3) directly; for P2, we split \(NSENTRY_i \) into early and late entries to examine if \(\beta \) is smaller for the latter; and P3 implies that \(\beta \) should be smaller in cities with a closer ‘ideological proximity’ to the Nazis. Finally, in addition to entry rates, we also use election results for the NSDAP as dependent variable.

4 Main Results

In this section, we present our main results. In line with prediction P1, we show that more civic associations spelled a higher frequency of NSDAP entry. This result holds after controlling for a host of socio-economic variables. In line with predictions P2 and P3, the

\(^{29}\) Here we implicitly assume that \(p_r(i) \) grows faster than \(p_a(i) \) as membership rises, while \(p_a(i) > p_r(i) \) continues to hold. In words, Nazi Party membership rises more strongly in the population overall (where it started from very low levels and quickly became a mass movement), while the party remains overrepresented in associations – in line with it continuing to exploit social connection.
effect of association density is stronger for early party entries and in cities with less pro-Nazi ideology. Both military associations and ‘apolitical’ clubs have the same predictive power. Overall, there is powerful evidence that more civic associations went hand-in-hand with a more rapid rise of the Nazi Party.

4.1 Two cities: Kleve and Coburg

We first illustrate the basic idea by comparing two towns – Kleve and Coburg. Both had a similar number of inhabitants in 1925: 20,241 in Kleve, and 24,701 in Coburg. Coburg had a vigorous civic society. The directory for 1924 lists five animal breeding clubs, including two canary breeders associations and a club for poultry- and rabbit-breeding. There were also 10 bowling clubs (“Happy Brothers” and “Riot” were some of the names chosen), 9 choirs or music associations, and one for the preservation of the local Bismarck memorial. In addition, there were 10 military associations (for former members of the 5th infantry regiment, for veterans of the Imperial Army, and for officers). The total number of associations came to 74 – 2.99 per 1,000 inhabitants of Coburg.

In Kleve, there were only two associations for animal breeding (horses and poultry), and one choir; there were no clubs for former members of the German armed forces. The overall density of associations per 1,000 inhabitants was 0.89 – less than one third of the value in Coburg (18 clubs in total). As our hypothesis predicts, there were numerous entries into the NSDAP in Coburg – 52 citizens in our sample joined the Nazi Party, 8 of them as early as 1925. In Kleve, there were only 9 new members – a rate of entry approximately 80% lower than in Coburg.

4.2 Baseline Results

In the following, we examine the link between association density and Nazi Party entry systematically. In Table 3, we present our baseline results, estimating equation (3), and reporting beta coefficients. Overall, association density strongly and significantly predicts higher entry rates into the NSDAP. The effect is large – the per capita entry rate increases by approximately 0.4 standard deviations (or by 0.025/1,000) for every standard deviation increase in association density (1.6/1,000).\(^{30}\) With average entry rates of 0.077 per year in

\(^{30}\) In Appendix C, we use entry rates that are corrected for the change in sampling methodology in the Schneider-Haase (1991) membership sample. These yield equally strong estimates, with larger absolute effects: in the baseline specification (col. 4 in Table A.1, panel A), per capita entry rates increase by 0.077/1,000 for a one-standard deviation increase in association density (relative to average entry rates of 0.25/1,000), while the standardized beta coefficient is 0.375. Since our sample accounts for about 15% of
the Berlin-Minneapolis sample, a standard deviation higher association density thus went hand-in-hand with one-third faster Nazi Party entry. The absolute effect is also large: given that the Berlin-Minneapolis sample represents approximately 2% of all entries, and that our sample covers 9 years (1925-33), there were on average 35 entries per 1,000 inhabitants over this period – and 11 additional entries for a one standard deviation increase in association density. This offers direct support for our prediction P1.

Non-military clubs (animal breeders, bowling clubs, singing associations, gymnasts, Carnival clubs, and firefighting associations) produce similar coefficients (col 2 in Table 3). Military associations (col 3) are also significant predictors of NS entry. In columns 4-6, we also control for our baseline set of socio-economic characteristics. All coefficients remain significant, and of similar magnitude. Overall, the results show a strong connection between Nazi Party membership and association density – one that is not driven by the religious make-up of the population, by the size of the population, or the socio-economic characteristics of a location. Figure 3 plots the conditional correlation based on the baseline specification in col. 4 in Table 3. It is clear that in towns and cities with high association density, many more citizens joined the Nazi Party.31

So far, we have only controlled for the share of population that is Catholic, for the share of blue-collar workers, and the size of each city. In Table 4, columns 1-3, we add political controls, including votes for nationalistic parties in 1912, the percentage of Jews in each town in 1925, and the number of Hitler speeches in 1932. In columns 4-6 we also use several socioeconomic controls, such as the number of welfare recipients and social insurance pensioners, tax receipts, as well as war veteran density.32

Socio-economic indicators are poor predictors of party entry. The depth of the economic downturn in 1933 – which may reflect underlying economic vulnerabilities in the 1920s already – is not significantly associated with party entry. The same is true for most other socioeconomic variables, as well as for the share of Jews. Hitler speeches are an exception. As one might expect, these are positively associated with party entry (and

31 There are two observations in the “North-Eastern” corner of Figure 3 that have high leverage – Memmingen and Passau. If we drop these observations, we obtain a somewhat larger coefficient with a slightly lower t-statistic (Figure A.1 in the appendix).
32 These data are from Adena et al. (2013). We thank Maja Adena, Ruben Enikolopov, Maria Petrova, Veronica Santarosa, and Katia Zhuravskaya for kindly sharing their digitization of socioeconomic variables from the 1933 Statistik des Deutschen Reichs.
causality could run either way). Vote shares for the conservative parties in 1912 also show consistent coefficients across specifications – albeit with opposite signs. Votes for the National Liberal Party predict higher Nazi Party entries, while the effect of the German Conservative Party is negative. This underlines the important ideological (and class) differences between German conservatism in general and National Socialism. Crucially, including this wider set of controls does not weaken our main results.

4.3 Early vs. Late Entry

Entry rates for the NSDAP were not constant over time. After the party’s ban was lifted in 1925, entry rates were low; they gradually increased over time, culminating in a torrent of entry during the Great Depression. Our model predicts that the link between association density and party entry was stronger in the early years of the Nazi Party (P2). To test this prediction we split overall entry rates into early (1925-28) and late (1929-33).

In Table 5, we first use early entry rates as the dependent variable (cols 1 and 2). Results are somewhat larger than the ones obtained before (Table 3) and highly significant. Estimating with late entry (cols 3 and 4) also yields significant but markedly weaker results. This supports prediction P2. Finally, controlling for early entry rates reduces the coefficient on association density to insignificance (col 5 and 6). This is also in line with P2; in later years, the already existing (early) Nazi membership base played a central role in attracting new members, while dense local social capital affected late entry only indirectly, by fostering early party entry.

4.4 NS Recruitment in Areas of Low Potential

Proposition 3 of our model predicts that in areas where the NSDAP had a larger pool of (potential) supporters, association membership should have been relatively less important. To measure ‘ideological proximity’, we do not use NS membership or voting for the Nazis, since they may reflect the effects of association density. Instead, we measure potential support as the share of votes for the DVP (German People’s Party).

The DVP was the successor to the National Liberal Party of the Imperial period. The party was right-wing, nationalist, and pro-free trade. Initially opposed to the new democratic order, it changed course after 1920 and became more centrist. As it moved

33 Table A.3 in the appendix reports further results on early and late entry, using different measures of association density. In order to make the coefficients for early and late entry comparable, we first standardize annual entry rates before computing their average. Appendix C provides further detail on standardized entry rates.
towards the center, many of its traditional supporters looked for alternatives. The nationalist DNVP profited, and so did the NSDAP. We expect “NS potential” to be higher where the DVP received more votes in Weimar’s early years. We use DVP votes in the 1924 election as an indicator of potential support – just before we observe Nazi Party entry rates. The 1924 election has the additional advantage that the NSDAP itself was still banned, so that it did not directly interfere with DVP votes.

Does the effect of association density on NS entry vary with DVP support? Table 6 shows that areas with below-median DVP election results, the coefficient on association membership is large and significant (col 1); in areas with high DVP support, it is positive but only 1/5th in size, and insignificant. The difference in slopes is significant (col 3). The same conclusion emerges from interacting the DVP vote share with association density (col 4). These results support prediction P3 – in locations less inclined towards the NSDAP, association density mattered more in promoting party entry.

4.5 Election Results

So far, we have focused on Nazi Party membership. We now turn to election results. A strong organization in the form of thousands of membership cells was key to the Nazi Party’s electoral success in the late Weimar Republic. Columns 1-3 in Table 7 show that Nazi Party membership was strongly associated with success at the polls. In the 1928, 1930, and 1933 parliamentary elections NSDAP vote shares are strongly correlated with average party entry rates up to that date. The coefficients are significant and positive; Figure A.6 in the appendix shows that this reflects a broad pattern that is not driven by outliers.

Columns 4-6 in Table 7 explore the link between association membership and votes for the NSDAP. We report two-stage least square (2SLS) results, using association density to predict Nazi Party membership, which in turn explains NSDAP votes. Results are similar in magnitude to those in columns 1-3, suggesting that associations affected votes via Nazi Party entry. For every standard deviation increase in membership shares in 1928, NSDAP votes were 0.7 standard deviations higher. For later elections, the coefficients are smaller (0.55 in 1930 and 0.3 in 1933). This is in line with prediction 2, which says that local

34 The DVP declined from a vote share of almost 14% in 1920 to 1.9% in November 1932. Its decline is paradigmatic for Weimar’s shrinking political middle (Bracher 1978).

35 We focus on the elections in 1928, 1930, and 1933 because these are the years for which NSDAP election results are available at the city level. In order to make the coefficients on membership for different election years comparable, we standardize Nazi Party entry rates in each year before computing the average. This is necessary because the Berlin-Minneapolis team uses a new sampling method after 1930, so that in the raw data, later entries are underrepresented. See Appendix C for detail.
associations were particularly important for the Nazi Party to garner support during the early years. Finally, reduced-form regressions of NSDAP votes on association density also yield strongly positive coefficients (see Table A.14). A one standard deviation increase in \(ASSOC_{all} \) is associated with Nazi votes that are higher by 0.17-0.37 standard deviations.\(^{36}\) These results strongly suggest that association density did not only result in more members of the Nazi Party; it also boosted the NSDAP’s fortunes at the polls.

5 Robustness and Omitted Variable Bias

In this section, we examine the robustness of our findings. We already showed that results are strong for both early and late entry, and after controlling for a host of socio-economic characteristics. We now test the strength of the main effect in varying subsamples and for different estimation techniques. We also present results for different types of associations. Finally, we use an IV strategy that allows us to sidestep potential concerns about omitted variable bias.

5.1 Alternative Specifications and Different Association Types

We begin by analyzing whether our results hold within a number of subsamples, defined by socioeconomic characteristics. Columns 1 and 2 in Table 8 show that where Catholics dominated, more clubs and societies led to proportionately faster entry than in Protestant areas (col 1 and 2), but the effects are highly significant in both cases. In general, Catholic areas were typically more resistant to the lure of the Nazi Party. That is why it is interesting that in cities dominated by Catholics, the effect of social capital was stronger. This finding is in line with prediction P3 from our model – where the party faced a more adverse political climate, associations mattered most to garner support. Next, localities in predominantly working-class areas saw similar increases in NS entry as a function of association density as the rest (cols 3 and 4). There is also no evidence that the presence of Jews modified the basic relationship between the density of civic associations and the rise of Nazi membership (cols 5 and 6). Finally, city size was not crucial for the relationship between associations and party entry (cols 7 and 8). This alleviates the concern in terms of balancedness (Table 2), where cities with high association density are on average smaller.

\(^{36}\) When including both association density and NSDAP membership (not reported in the tables), only the latter is significant. This further supports the interpretation that social capital affected votes via fostering Nazi Party entry.
We perform a number of additional robustness checks, which we briefly summarize here, while coefficients are reported in Appendix D. In Table A.4, we use propensity score matching to compare Nazi Party entries in cities of similar size and geographic location. We find large and statistically significant differences in entry rates for locations with high (upper tercile) versus low (lower tercile) association density. Next, a log specification does not change results (Table A.5); the same is true of robust estimation (Table A.6), and for median regressions (Table A.7). When we use the conditional 25th or 75th percentile as the dependent variable (Table A.8), we also find that our main results hold. Finally, Table A.9 reports results for the full sample including the noisy observations for small towns (with less than 5,000 inhabitants).

5.2 Different Association Types

Social capital comes in different types. Putnam distinguishes between “bonding” and “bridging” social capital. The former cements pre-existing social cleavages; the latter brings people from different backgrounds together. According to Putnam, bonding social capital may have adverse effects; bridging social capital should always have benign consequences. To analyze this further, we classify the associations in our sample accordingly (Appendix B). For example, a choir is a typical bridging club – only enthusiasm for singing (and a good voice) were needed, and there were no monetary, social, or gender barriers to entry. In contrast, Herrenclubs were bonding associations – broadly similar to London gentlemen clubs, they served the members of the old, land-owning elite and the new wealthy upper class.

Table 9 gives the results of regressing Nazi Party entry rates on the density of bridging and bonding associations. We find that both are strongly associated with NS Party entry, with positive, significant, and quantitatively meaningful coefficients that are similar in magnitude. This suggests that both types of associations were important pathways for the spread of the Nazi Party. When including both types simultaneously, none of them dominates (see Table A.10).37

37 In Figure A.5 in the appendix, we plot the full range of coefficients for all quantiles from the 5th to the 95th, for the main specification (for all associations, with controls). The coefficients rise slightly with Nazi Party entry rates, but are overall remarkably stable and significant.

38 The correlation coefficient of the two variables is 0.43 in our sample. Table A.10 also shows that non-military associations were probably more important for the rise of the Nazi Party than their military counterparts. The same is true for non-worker associations (as opposed to worker-specific ones).
5.3 Omitted Variable Bias

Could our regression results reflect reverse causality or omitted variable bias? Reverse causation is not plausible – the Nazi Party did not sponsor a plethora of local clubs and associations. However, it could be argued that NS membership entry was frequent in locations where economic distress was high, and hence the opportunity cost of time was low. This would also translate into more time spent in clubs and associations and therefore result in a spurious correlation between association membership and Nazi Party entry.

To sidestep this issue, we investigate the deeper history of associations in each city. Association density reflects two factors – incentives to join a club at any one point in time, and the cumulative history of sociability, co-operation, and shared interests. We use two instruments to capture the deeper historical roots of social capital. The first is based on the early history of gymnast associations. Inspired by Friedrich Ludwig Jahn, Germans joined gymnast associations (Turnvereine) in great numbers in the 19th century. Gymnast associations had a political edge, but they were not reactionary: it was one of the groups contributing to the 1848 revolution. Detailed information on Turnverein members exists from the 1860s onwards. Our second instrument uses participation of town delegates in the 1861 Nuremberg Singers’ Festival (Sängerfest). Some 283 singing associations participated; the number of singers is given as between 6,000 and 20,000 (Klenke 1998). We normalize both instruments by city population in 1863.39

The exclusion restriction is as follows: For gymnast density and singer festival participants to be valid instruments, we have to believe that towns with relatively higher values in the 1860s only had higher entry rates to the Nazi Party because association density in general was higher there. In other words, there is no direct effect of gymnast membership and singer festival participation on Nazi entry 60-70 years later, and both instruments must also be uncorrelated with other factors that drove NSDAP membership.

One possible threat to the exclusion restriction is that participation in the singer festival or in gymnast associations may potentially reflect aggressive nationalistic

39 Some city boundaries changed over time, especially when surrounding towns and villages were incorporated. This creates large and spurious increases in reported population – in some cases the number of recorded inhabitants grew by more than a factor of 20 between 1863 and 1925. We therefore weigh our regressions by a proxy for the comparability of the 1863 population figure: The ratio of population in 1863 to 1925, relative to the average nationwide difference in city population over the same period. Results are very similar when not weighing, but the first stage is somewhat weaker. For example, for our main specification (column 4 in Table 10), the p-value for the first stage (underidentification test) becomes 0.04 instead of 0.01, and the second-stage beta coefficient is 1.168, with an Anderson-Rubin p-value of 0.001.
tendencies of the Nazi type. However, 19th century nationalism was typically liberal, not militarist nor aggressive: “Germany and other modernizing nations became real to people because many thousands traveled around these nations…meeting their fellow countrymen and singing together” (Applegate 2013). The liberal, folk-based nationalism of the 19th century is not to be confused with the political agitation and xenophobia that the Nazis and other right-wing parties represented in Weimar Germany. In sum, while our IV strategy has to be interpreted with caution, we are confident that the exclusion restriction is broadly plausible.

Table 10 presents our IV results. The first stage is highly significant for most specifications, as reflected by the p-values for the F-test of excluded instruments. For our main specification in column 4, the first stage has a p-value of 0.013. In addition, the overidentification test does not reject instrument exogeneity in any of the specifications. While this result is subject to the usual concern of weak statistical power, it is reassuring with respect to the exclusion restriction of our instruments. In the second stage, we obtain large and statistically significant coefficients on association density. We report p-values based on the Anderson-Rubin test of statistical significance in square brackets. These are robust to weak instruments (Andrews and Stock 2005). We also perform a reduced-form estimation (not reported in the table), regressing party entry rates on the first principal component of the two instruments. Without controls, the beta coefficient is 0.37 with a t-statistic of 4.52, and when adding our baseline controls, 0.27 (4.21).

The IV coefficients are between two and four times larger than their OLS counterparts. Measurement error is a likely reason for the difference: In the main analysis, we use association density per city, i.e., the number of associations per 1,000 inhabitants in the 1920s. The number of members – which would be a more precise measure – is not available. Both instrumental variables, on the other hand, rely on the number of members/participants. Thus, our instruments may capture both the intensive and extensive margin of association participation. It is plausible that this reduces noise in the estimation, yielding higher coefficients in the second stage. If taken at face value, the IV results imply that a one standard deviation increase in association density is associated with an

40 We report the Chi-square test; the F-test based p-values are very similar – for example, for our main specification in column 4 of Table 10, the F-test yields a p-value of 0.0088.
41 The principal component combines our two instruments into one variable. Following Bai and Ng (2010) and Winkelried and Smith (2011), linear combinations of valid instruments remain valid instruments.
 approximately one standard deviation rise in Nazi Party entries.42

6 Discussion

So far, we have shown that NS entry in a cross-section of towns and cities was robustly and strongly correlated with association density. Both in terms of membership and electoral support, social capital appears to have undermined Germany’s first democracy, by boosting the fortunes of an extremist party. Before we can accept this conclusion, two questions arise: First, did association density also strengthen other parties in the same location? Second, given that social capital is normally associated with better-functioning political systems, what are the reasons for the opposite holding true in Weimar Germany?

6.1 Other Parties and Worker Associations

Were people in towns and cities with more civic associations simply more social, joining all manners of clubs, societies and parties to a greater extent? Ideally, we would like to test if entry rates for all parties (including, at the opposite end of the political spectrum, the Communist party), were higher in places with more associations. Unfortunately, membership records for other parties are not readily available for the period. Instead, we examine two aspects. First, we test if the reduced-form relationship of association density and electoral results that we found for the Nazi Party also held for other parties (Table A.14 in the appendix shows that the reduced form yields strong results for the NSDAP). Second, we collect additional data on workers’ associations to test if there is evidence of location-specific sociability independent of social background.

In Table A.15, we examine the link between association density and election results at both ends of the political spectrum, using vote shares for the Communist Party (KPD), as well as for the DNVP, a far-right, bourgeois party that shared many of the NSDAP’s

42 We cannot entirely exclude the possibility that our instruments are related to Nazi Party entry via channels other than association density. We allow for deviations from perfect instrument exogeneity, using the method in Conley, Hansen and Rossi (2012). In this way, we examine the consequences of a possible direct effect on party entry. Appendix E summarizes this analysis. It shows that, for our IV result to become insignificant, the direct effect of the instruments would have to be at least one-half of their overall reduced form effect on party entry. In other words, Sängerfest participation in 1861 and the density of gymnasts in the 1860s would have to be at least half as potent a pathway to NS membership as participation in clubs and associations in the 1920s – which seems improbable. The Conley et al. results strongly suggests that the IV estimates are robust even to substantial deviations from strict exogeneity. In addition, we perform a bounding exercise in the spirit of Altonji, Elder, and Taber (2005). Results can be found in Appendix F. Overall, we estimate that the effect of selection on unobservables would have to be between 2.5 and 9 times stronger than selection on observables for our main results to be overturned – a ratio normally considered too high to be plausible.
extremist views. Both parties won about 10% of the votes in 1928. For the communists, we consistently find negative coefficients on association density – the higher social capital in any one location, the lower the vote share that went to the KPD. For the DNVP, we obtain small positive and insignificant coefficients.

These results suggest that denser networks of associations did not increase support for all parties at the extreme ends of the political spectrum. Instead, among the more radical, small parties, the interaction between civic associations and support at the polls was unique to the NSDAP – the Nazis were highly successful in exploiting networks of associations and pre-existing contacts to grow and to spread their message. This finding offers strong support to the historical hypothesis as supported by local and regional case studies, that the NSDAP successfully penetrated clubs and associations, and co-opted local opinion leaders (see Section 2) – a path not open to other radical parties like the Communists because of basic ideological incompatibilities between its main message and the bourgeois associations (Anheier 2003a; Bösch 2005; Noakes 1971).43

Next, we ask i) is there a general sociability component in association membership – are there also more workers’ associations in cities with generally high membership rates; ii) is the density of workers’ associations also correlated with Nazi Party entry (which would lend support to the notion of a location-specific sociability). Table 11 performs such a test and finds strong support for i), but none for ii): locations with more associations in general also had greater densities of workers’ associations (col 1 and 2).44 However, workers’ associations have no predictive power for NSDAP entry (col 3 and 4). In addition, our baseline measure of association density is not affected by controlling for workers’ associations (col 5). In sum, these results suggest that places with high association density were more sociable in general. At the same time, sociability alone cannot explain the rise of the Nazi Party. Middle-class clubs acted as gateways to the Nazi movement, but working class associations did not – "infection" apparently required a minimum degree of ideological compatibility. In other words, one reason why the Nazis benefited from associations disproportionately is that they could spread their message to many social groups via clubs and societies, whereas workers’ parties only succeed in organizing support amongst their own clientele.

43 Zofka (1979, pp.142-143) provides several examples for how the Nazis established themselves in bourgeois circles by organizing local cultural events, such as symphony concerts.
44 We classify workers’ associations based on their names within each category, e.g., the “Workers' Cycling Club”, the “Red Front Boxing League”, etc.
6.2 The Importance of Institutional Context: The Case of Prussia

Why was social capital a double-edged sword for Germany’s first democracy, when it is mostly associated with positive political outcomes elsewhere? In our view, the institutional context is key. The Weimar Republic in general was politically weak, governments changed with alarming frequency, the democratic state was unable to defend itself against extremists, and torn by strife between republican parties that were often unwilling to shoulder responsibility (Bracher 1978).

In the state of Prussia, however, democratic institutions were more resilient. Prussia’s government administered about half of German interwar territory. The so-called “Weimar Coalition” – composed of the Social Democrat Party (SPD), the Center party (Zentrum), and the German Democratic Party (DDP) – ruled in Prussia from 1919 to 1932. For almost the entire time, the same Prime Minister, the social democrat Otto Braun, was in charge. It instituted several important constitutional reforms, such as the need for a new government to be formed simultaneously with the old one losing power.45 This allowed the democratic coalition to rule despite losing its parliamentary majority early on (in parallel with developments in the Reich). The Prussian Interior Ministry vigorously cracked down on paramilitary units of the right and the left (the SA and the Red Front associations), regularly banned public demonstrations and assemblies planned by both the Communists and the Nazis, forbid the use of uniforms in public, and for extended periods stopped Hitler from speaking on Prussian territory. A strong democratic leadership was not afraid to make tough decisions, even when it came to “sacred cows”.46 For all these reasons – and despite Prussia’s reputation for militarism – the regional state was a stronghold of democracy (Orlow 1986).

While Weimar’s political, social and economic upheavals affected Prussian citizens as well, they had reason to trust the democratic process. Strong institutions ultimately require both pluralism and political centralization (Acemoglu 2013; Acemoglu 2005). Weimar on the whole erred on the side of excessive pluralism, allowing the enemies of an open society to abuse the rights of free assembly, free speech, and freedom of association.

45 Prussia pioneered this so-called “constructive vote of no confidence”; this feature was later adopted by the Federal Republic of Germany (Skach 2005).

46 In one (in)famous episode, the SPD-appointed police chief of Berlin banned all assemblies for May Day 1929. When the Communist party organized demonstrations regardless, violent clashes resulted in 19 workers being killed (Kurz 1988).
Prussia, on the other hand, successfully balanced the demands of pluralism and state capacity.

We expect Prussian institutions to matter for several reasons. Strong leadership can help to align beliefs by changing expectations (Acemoglu and Jackson 2011); the democrats in power in Prussia defended public order and (mostly) governed even-handedly and responsibly. In Table 12, we analyze the extent to which the link between association density and Nazi Party entry also held in Prussia. We begin by using early party entries as the dependent variable because we expect the difference to be particularly pronounced before 1930, which brought increasing pressure from the central government. First, we split the sample. The Prussian part comprises about one half of all cities in our sample. Column 1 in Table 12 shows that for the 49 non-Prussian cities, the relationship between association density and party entries remains strong and significant. This suggests that fewer observations themselves do not affect our results. Next, for Prussia only (col 2), the coefficient on associations for early party entry is small (only one third as compared to col 1) and insignificant. In column 3, we use the full sample again and include an interaction term between the Prussia dummy and association density. It shows that the relationship between early party entry and association density was significantly weaker in Prussia before 1930. Columns 4-6 repeat the analysis for late party entries. As expected, we do not find any significant differences between Prussia and the rest of Weimar Germany: Association density is correlated with more entries in both subsamples, and the interaction term is positive and insignificant. Thus, social capital eventually showed its “dark side” in Prussia, too, when economic and political problems in Germany as a whole became overwhelming. Table A.12 in the appendix shows that these results also hold in alternative specifications, and for other measures of association density.

47 It is for the same reasons that the Prussian government under Prime Minister Otto Braun was eventually removed in July 1932, when the increasingly right-wing national government under Chancellor von Papen seized power in Prussia in a coup d’état (Preussenschlag).

48 Table A.11 in the appendix examines the balancedness of our sample for Prussia vs. the rest of Weimar Germany.

49 The appointment of Heinrich Brüning as Chancellor in 1930 is considered by historians to be the de facto end of democracy in Weimar Germany (Bracher 1978).

50 We also include interaction terms with the controls, to avoid that ASSOC×Prussia alone captures all interaction effects associated with Prussia. However, results are almost identical when including only ASSOC×Prussia – see Table A.12 in the appendix, which also shows that the interaction effect is particularly strong (negative) for military associations.

51 In addition to providing evidence for the role of institutions, the results on Prussia alleviate the concerns that unobserved factors drive our results (see Section 5.3). The relationship between association density and Nazi Party entry is present throughout the sample in non-Prussian territories, but only after 1929 in Prussia.
In parts of Weimar Germany where the regional government worked relatively well, civic associations were markedly less potent as pathways for infection with Nazi ideology. This finding suggests that a functional, strong, democratic regional government – in charge of providing essential services such as policing and education – could do much to ensure that social capital did not develop a “dark side”. In other words, in the presence of strong institutions, the potentially malign effects of a vibrant civic society can be kept in check. Our findings suggest an important interaction effect between social capital and institutions, and they allow us to assess what it takes for social capital to be a beneficial – fair, strong, and stable government.52

7 Conclusion

When is social capital beneficial? While a rich literature has documented a positive relationship between desirable political outcomes and dense networks of civic associations and clubs, the analysis of negative effects has mostly focused on crime and related localized activities (Field 2003). Tocqueville (1835) pioneered the argument that social capital is crucial for democracy. He also pointed out “the liberty of association is only a source of advantage and prosperity to some nations, it may be perverted or carried to excess by others, and from an element of life may be changed into a cause of destruction.”

We show that a vigorous civic society can undermine the existing democratic order. In interwar Germany at least, a vibrant civic society facilitated the spread of the Nazi Party and its electoral success. It contributed to the eventual collapse of democracy and the rise of one of the most destructive regimes in history. Our main results suggest that social capital can not only be built by autocratic leaders as a tool to entrench their rule, but that \textit{pre-existing} social capital can be exploited for the rise of a autocratic regimes. This conclusion is in stark contrast to an earlier literature that blamed Germany’s path to totalitarian rule on a “civic non-age” of low social capital (Stern 1972), and Nazi entry on rootless, isolated individuals in a modernized society (Shirer 1960).

52 Here, our conclusions are related to the findings by Acemoglu et al. (2013), who show that social capital is associated with worse governance outcomes in Sierra Leone because it strengthens the role of traditional chiefs.
Our results emerge clearly from new cross-sectional evidence collected from city directories. In towns and cities with more grass-root clubs and associations, the Nazi Party grew markedly faster. This is true both for the party’s early years and for its final ascendancy to power, after the start of the Great Depression. Association density also predicts the NSDAP’s electoral success – a result that works via party entry. Our findings highlight the importance of personal, face-to-face interactions in the spread of a radical new movement. Historical instruments suggest that the link is causal: The share of variation in civic society indicators explained by deeper historical roots of association-based sociability strongly predicts NS entry rates.

Why is social capital associated with benign outcomes in some contexts, but not in others? We examine political differences within Germany to answer this question. Overall, Weimar Germany’s institutions did not work well – governments were weak and short-lived, economic policy often failed, and extremist parties blossomed (Bracher 1978). At the same time, the state of Prussia was a bastion of well-functioning republican institutions. There, the link between association density and Nazi Party entry was much weaker than in the rest of the country. This suggests that the effects of social capital may depend on the institutional context; where democratic politics on the whole “worked”, and citizens had fewer reasons to give up on viability of a democratic state, more social capital had no corrosive effects.

53 Here, our results echo those of Zuckerman (2005) and Madestam et al. (2013).
Bibliographical references

Abel, Theodore Fred. 1938. Why Hitler Came into Power: An Answer Based on the Original Life Stories of Six Hundred of His Followers. Prentice-Hall, inc.

Tocqueville, Alexis de. 1835. De La Démocratie En Amérique.

FIGURES

Figure 1: Cumulative NSDAP membership, by tercile of association density

Note: Each data point reflects the cumulative NSDAP entry rate (per 1,000 inhabitants), starting in 1925 and averaged across the cities with lower, middle, and upper tercile of association density. The data are described in Section 3. NSDAP entries are from the Berlin-Minneapolis sample (Schneider-Haase 1991); starting in 1930, we correct aggregate entry rates for a change in sampling methodology, as described in Appendix C. The sample reflects approximately 2% of all entries until 1933 (42,018 out of approximately 2 million).

Figure 2: Location of towns and cities in the sample, by association density
Figure 3: Conditional scatter, NSDAP entry rate and association density

Note: The y-axis plots the variation in NSDAP entry rates (per 1,000 inhabitants) after controlling for the share of Catholics, ln(population), and the of share blue collar workers, all measured in 1925. The regression line has a beta coefficient of 0.420 with a t-statistic of 4.73 (as in Table 3, col 4).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Means</th>
<th>Sample</th>
<th>Urbana</th>
<th>Reich</th>
<th>Standard deviations</th>
<th>Sample</th>
<th>Urban</th>
<th>Reich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Socio-economic variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blue collar (1925)</td>
<td>51.6%</td>
<td>48.8%</td>
<td>45.9%</td>
<td>10.9%</td>
<td>10.0%</td>
<td>11.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white collar (1925)</td>
<td>43.6%</td>
<td>46.1%</td>
<td>41.5%</td>
<td>9.8%</td>
<td>9.0%</td>
<td>8.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>unemployment (1933)</td>
<td>27.4%</td>
<td>25.2%</td>
<td>18.6%</td>
<td>6.0%</td>
<td>7.2%</td>
<td>9.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pop. size (1933)</td>
<td>92,916</td>
<td>30,924</td>
<td>12,973</td>
<td>166,850</td>
<td>156,725</td>
<td>82,306</td>
<td>49,992</td>
<td></td>
</tr>
<tr>
<td>Elections of March 1933</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSDAP</td>
<td>38.6%</td>
<td>38.3%</td>
<td>44.1%</td>
<td>6.5%</td>
<td>8.1%</td>
<td>11.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zentrum (conservative)</td>
<td>15.2%</td>
<td>12.9%</td>
<td>15.1%</td>
<td>12.3%</td>
<td>13.7%</td>
<td>16.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KPD (communists)</td>
<td>15.8%</td>
<td>16.1%</td>
<td>11.8%</td>
<td>5.6%</td>
<td>7.5%</td>
<td>7.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPD (social democrats)</td>
<td>19.2%</td>
<td>20.7%</td>
<td>17.6%</td>
<td>8.2%</td>
<td>8.2%</td>
<td>8.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Religious affiliation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protestant (1925)</td>
<td>58.9%</td>
<td>63.3%</td>
<td>63.4%</td>
<td>26.5%</td>
<td>27.4%</td>
<td>32.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jewish (1925)</td>
<td>1.1%</td>
<td>1.5%</td>
<td>0.9%</td>
<td>0.7%</td>
<td>2.0%</td>
<td>1.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Catholic (1925)</td>
<td>39.7%</td>
<td>29.9%</td>
<td>32.3%</td>
<td>30.1%</td>
<td>29.4%</td>
<td>34.1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: The construction of our sample is described in Section 3.
a) Excludes eastern territories (east of the Oder-Neisse line) and towns with less than 5,000 inhabitants.
b) Towns with less than 2,000 inhabitants are not listed individually in the official Reichsstatistik, and are therefore excluded from these calculations.
Table 2: Balancedness: Controls for high and low association density

<table>
<thead>
<tr>
<th>year</th>
<th>variable</th>
<th>Ass. dens. rel. to median</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>below</td>
</tr>
<tr>
<td>1912</td>
<td>National Liberal Party (NLP)</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>German Conservative Party (DKP)</td>
<td>0.03</td>
</tr>
<tr>
<td>1925</td>
<td>Share Catholics</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>Population</td>
<td>126,381</td>
</tr>
<tr>
<td></td>
<td>Share blue collar workers</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Share of Jews</td>
<td>0.01</td>
</tr>
<tr>
<td>1933</td>
<td>Share of unemployed</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Welfare recipients per 1000</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>War participants per 1000</td>
<td>1.29</td>
</tr>
<tr>
<td></td>
<td>Social insurance pensioners per 1,000</td>
<td>9.69</td>
</tr>
<tr>
<td></td>
<td>Log(Average income tax payment)</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>log(Average property tax payment)</td>
<td>6.55</td>
</tr>
</tbody>
</table>

Note: * “below” and “above” refer to the median of association density. The t-test for the corresponding difference is reported in the last column of the table.

Table 3: Baseline results: Nazi Party entry and association density

<table>
<thead>
<tr>
<th>ASSOC measure</th>
<th>(1) all</th>
<th>(2) non-military</th>
<th>(3) military</th>
<th>(4) all</th>
<th>(5) non-military</th>
<th>(6) military</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOC</td>
<td>0.407***</td>
<td>0.225**</td>
<td>0.386***</td>
<td>0.420***</td>
<td>0.276**</td>
<td>0.308***</td>
</tr>
<tr>
<td>Share Catholics</td>
<td>-0.312***</td>
<td>-0.372***</td>
<td>-0.345***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln(pop)</td>
<td>0.161*</td>
<td>0.252**</td>
<td>0.135*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share Blue-collar</td>
<td>-0.236***</td>
<td>-0.279***</td>
<td>-0.238***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the average rate of Nazi Party entry (per 1,000 inhabitants) in each city over the period 1925-33. Standardized beta coefficients; t-statistics in parentheses * p < 0.10, ** p < 0.05, *** p < 0.01. ASSOC is the number of associations per 1,000 inhabitants in each city counting all, only non-military, or only military associations, as indicated in the table header.
Table 4: Additional controls and regional fixed effects

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ASSOC_{all})</td>
<td>0.420***</td>
<td>0.212**</td>
<td>0.421***</td>
<td>0.232**</td>
<td>0.410***</td>
<td>0.246*</td>
</tr>
<tr>
<td></td>
<td>(4.73)</td>
<td>(2.14)</td>
<td>(4.73)</td>
<td>(2.34)</td>
<td>(4.77)</td>
<td>(1.98)</td>
</tr>
<tr>
<td>(\ln(1+\text{Hitler speeches), 1932})</td>
<td>0.209**</td>
<td>0.079</td>
<td>0.204**</td>
<td>0.105</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.24)</td>
<td>(0.58)</td>
<td>(2.12)</td>
<td>(0.75)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Share of Jews (1925)</td>
<td>-0.077</td>
<td>-0.107</td>
<td>-0.100</td>
<td>-0.142</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-1.07)</td>
<td>(-1.01)</td>
<td>(-1.43)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vote for NLP (1912)</td>
<td>0.189**</td>
<td>0.061</td>
<td>0.189**</td>
<td>0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.60)</td>
<td>(2.12)</td>
<td>(0.69)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vote for DKP (1912)</td>
<td>-0.227***</td>
<td>-0.162**</td>
<td>-0.220***</td>
<td>-0.146</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(-2.99)</td>
<td>(-2.16)</td>
<td>(-2.77)</td>
<td>(-1.61)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployment (1933)</td>
<td>0.116</td>
<td>0.054</td>
<td>0.116</td>
<td>0.054</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.45)</td>
<td>(0.29)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Welfare recipients per 1000</td>
<td>0.074</td>
<td>0.050</td>
<td>0.074</td>
<td>0.050</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.03)</td>
<td>(0.92)</td>
<td>(1.03)</td>
<td>(0.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social insurance pensioners per 1000</td>
<td>0.057</td>
<td>0.095</td>
<td>0.057</td>
<td>0.095</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.49)</td>
<td>(0.48)</td>
<td>(0.49)</td>
<td>(0.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln(\text{Average income tax payment}))</td>
<td>0.091</td>
<td>0.042</td>
<td>0.091</td>
<td>0.042</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.05)</td>
<td>(0.46)</td>
<td>(1.05)</td>
<td>(0.46)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Regional FE</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>100</td>
<td>100</td>
<td>98</td>
<td>98</td>
<td>97</td>
<td>97</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.343</td>
<td>0.665</td>
<td>0.452</td>
<td>0.712</td>
<td>0.497</td>
<td>0.730</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the average rate of Nazi Party entry (per 1,000 inhabitants) in each city over the period 1925-33. Standardized beta coefficients; t-statistics in parentheses * \(p < .10 \), ** \(p < .05 \), *** \(p < .01 \). \(ASSOC_{all} \) is the number of associations per 1,000 inhabitants in each city. Baseline controls include the share of Catholics, \(\ln(\text{city population}) \), and the share of blue collar workers, all in 1925. Data on Hitler speeches are from Aldena et al. (2013) \(NLP \) and \(DKP \) are nationalist parties in the 1912 federal election: the National Liberal Party and the German Conservative Party, respectively. All socioeconomic controls starting from unemployment are from the 1933 Statistik des Deutschen Reichs. Regional fixed effects reflect dummies for 25 individual regions labeled \(Wahlkreis \) in the 1933 Statistik des Deutschen Reichs. Altogether, there were 35 such \(Wahlkreise \) in Germany in its 1933 borders; our sample lacks some of these because we focus on Germany in its current borders.
Table 5: Early and late Nazi Party entries

<table>
<thead>
<tr>
<th>Dep. Variable:</th>
<th>(1) Early Party entry (1925-28)</th>
<th>(2)</th>
<th>(3) Late Party entry (1929-33)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOCall</td>
<td>0.537*** (4.62)</td>
<td>0.298*** (3.45)</td>
<td>-0.031 (0.12)</td>
<td>0.013 (0.12)</td>
<td>0.613*** (5.31)</td>
<td>0.547*** (4.47)</td>
</tr>
<tr>
<td>Early entry</td>
<td>0.514*** (4.13)</td>
<td>(3.51)</td>
<td></td>
<td>(0.12)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Additional controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>98</td>
<td>100</td>
<td>98</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.289</td>
<td>0.358</td>
<td>0.238</td>
<td>0.323</td>
<td>0.500</td>
<td>0.510</td>
</tr>
</tbody>
</table>

Notes: In cols 1 and 2, dependent variable is the average (standardized) rate of Nazi Party entry (per 1,000 inhabitants) in each city over the period 1925-28 (“early entries”); cols 3-6 use “late entries” between 1929-33. When calculating average entry rates, the entry rates for each year are first standardized – this ensures that coefficients for earlier and later entry rates are comparable. Standardized beta coefficients; t-statistics in parentheses * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. ASSOC is the number of associations per 1,000 inhabitants in each city counting all, only non-military, or only military associations, as indicated in the table header. Baseline controls include the share of Catholics, ln(city population), and the share of blue collar workers, all in 1925. Additional controls include the full set of political and socioeconomic controls used in Table 4.

Table 6: NS potential and the importance of associations

Dependent variable: Nazi Party entry rates, 1925-33

<table>
<thead>
<tr>
<th>Sample:</th>
<th>(1) Low DVP</th>
<th>(2) High DVP</th>
<th>(3) All cities</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOCall</td>
<td>0.551*** (5.54)</td>
<td>0.110 (0.84)</td>
<td>0.552*** (5.54)</td>
</tr>
<tr>
<td>DVP$_{high}$</td>
<td>2.088** (2.35)</td>
<td>-0.370** (-2.55)</td>
<td></td>
</tr>
<tr>
<td>DVP${high} \times$ ASSOC${all}$</td>
<td>(2.71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVP$_{1924}$</td>
<td>2.540*** (2.71)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVP${1924} \times$ ASSOC${all}$</td>
<td>-0.391** (-2.51)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Baseline controls \times DVP</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>48</td>
<td>48</td>
<td>96</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.408</td>
<td>0.209</td>
<td>0.325</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the average rate of Nazi Party entry (per 1,000 inhabitants) in each city over the period 1925-33. Standardized beta coefficients; t-statistics in parentheses * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. ASSOC$_{all}$ is the number of associations per 1,000 inhabitants in each city. DVP$_{high}$ is a dummy for above-median votes for the DVP (German National Party) in 1924; DVP$_{1924}$ is the actual vote share. Baseline controls include the share of Catholics, ln(city population), and the share of blue collar workers, all in 1925; we also include interactions of each control variable with DVP$_{high}$ in col 3 and with DVP$_{1924}$ in col 4.
Table 7: Election results

<table>
<thead>
<tr>
<th>Year (y)</th>
<th>(1) OLS 1928</th>
<th>(2) OLS 1930</th>
<th>(3) OLS 1933</th>
<th>(4) 2SLS 1928</th>
<th>(5) 2SLS 1930</th>
<th>(6) 2SLS 1933</th>
</tr>
</thead>
<tbody>
<tr>
<td>Party entry 1925-3y</td>
<td>0.708*** (5.43)</td>
<td>0.553*** (6.28)</td>
<td>0.296*** (3.47)</td>
<td>0.684*** [0.001]</td>
<td>0.459** [0.050]</td>
<td>0.306* [0.088]</td>
</tr>
<tr>
<td>Baseline controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Additional controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.612</td>
<td>0.672</td>
<td>0.616</td>
<td>0.616</td>
<td>0.616</td>
<td>0.616</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the vote share for the Nazi Party at the city level in year y (indicated in the table header). Standardized beta coefficients; t-statistics in parentheses * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. “Party entry 1925-3y” is the average (standardized) number of individuals entering the Nazi Party (per 1,000 inhabitants) between 1925 and year y in each city. Second stage results in cols 4-6 report the p-values [in square brackets] for the Anderson-Rubin (Chi-square) test of statistical significance (heteroskedasticity-robust). This test is robust to weak instruments (see Andrews and Stock, 2005 for a detailed review). The 2SLS results use ASSOC_all (the number of associations per 1,000 inhabitants in each city) to predict Nazi Party entry. Baseline controls include the share of Catholics, ln(city population), and the share of blue collar workers, all in 1925. Additional controls include the full set of political and socioeconomic controls used in Table 4.

Table 8: Subsamples

<table>
<thead>
<tr>
<th>Catholic share</th>
<th>Worker share</th>
<th>Jewish share (rel. to median) below</th>
<th>Jewish share (rel. to median) above</th>
<th>City size (rel. to median) below</th>
<th>City size (rel. to median) above</th>
</tr>
</thead>
<tbody>
<tr>
<td><50%</td>
<td>>50%</td>
<td><50%</td>
<td>>50%</td>
<td>ASSOC_all</td>
<td>0.319** (2.16)</td>
</tr>
<tr>
<td>Baseline Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>58</td>
<td>42</td>
<td>61</td>
<td>39</td>
<td>49</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.272</td>
<td>0.309</td>
<td>0.320</td>
<td>0.124</td>
<td>0.313</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the average rate of Nazi Party entry (per 1,000 inhabitants) in each city over the period 1925-33. Standardized beta coefficients; t statistics in parentheses * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. ASSOC_all is the number of associations per 1,000 inhabitants in each city. Baseline controls include the share of Catholics, ln(city population), and the share of blue collar workers, all in 1925.
Table 9: Bridging and bonding social capital

<table>
<thead>
<tr>
<th>Dependent variable: Nazi Party entry rates, 1925-33</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOC\textsubscript{bonding}</td>
<td>0.321*</td>
<td>0.357***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.98)</td>
<td>(2.92)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSOC\textsubscript{bridging}</td>
<td>0.202*</td>
<td>0.237*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.71)</td>
<td>(1.87)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Additional Controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>94</td>
<td>94</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.305</td>
<td>0.247</td>
<td>0.447</td>
<td>0.370</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the average rate of Nazi Party entry (per 1,000 inhabitants) in each city over the period 1925-33. Standardized beta coefficients; t-statistics in parentheses * $p < 0.10$, $^{**} p < 0.05$, $^{***} p < 0.01$. ASSOC\textsubscript{bonding} and ASSOC\textsubscript{bridging} are bonding (bridging) clubs per 1,000 inhabitants. Baseline controls include the share of Catholics, ln(city population), and the share of blue collar workers, all in 1925. Additional controls include the full set of political and socioeconomic controls used in Table 4.

Table 10: IV results

<table>
<thead>
<tr>
<th>Dependent variable: Nazi Party entry rates, 1925-33</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSOC measure</td>
<td>all</td>
<td>non-military</td>
<td>military</td>
<td>all</td>
<td>non-military</td>
<td>military</td>
</tr>
<tr>
<td>PANEL A: Second Stage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASSOC</td>
<td>1.206***</td>
<td>1.196***</td>
<td>1.213***</td>
<td>0.856***</td>
<td>0.767***</td>
<td>1.093***</td>
</tr>
<tr>
<td></td>
<td>[0.0009]</td>
<td>[0.0042]</td>
<td>[0.0014]</td>
<td>[0.0050]</td>
<td>[0.0058]</td>
<td>[0.0058]</td>
</tr>
<tr>
<td>Controls</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>PANEL B: First stage for association density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p-value for instruments</td>
<td>0.009</td>
<td>0.060</td>
<td>0.023</td>
<td>0.013</td>
<td>0.068</td>
<td>0.165</td>
</tr>
<tr>
<td>Overidentification test (p-value)</td>
<td>0.829</td>
<td>0.828</td>
<td>0.453</td>
<td>0.421</td>
<td>0.329</td>
<td>0.332</td>
</tr>
<tr>
<td>N</td>
<td>103</td>
<td>82</td>
<td>97</td>
<td>100</td>
<td>79</td>
<td>94</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the average rate of Nazi Party entry (per 1,000 inhabitants) in each city over the period 1925-33. Standardized beta coefficients; * $p < 0.10$, ** $p < 0.05$, *** $p < 0.01$. ASSOC is the number of associations per 1,000 inhabitants in each city counting all, only non-military, or only military associations, as indicated in the table header. Second stage results report the p-values [in square brackets] for the Anderson-Rubin (Chi-square) test of statistical significance (heteroskedasticity-robust). This test is robust to weak instruments (see Andrews and Stock, 2005 for a detailed review). Controls include %Catholic, ln(population), and %of blue collar workers, all measured at the city level in 1925. Instruments in the first stage are the density of gymnast association members in the 1860s (per 1,000 inhabitants in 1863), and participants from each city in the 1861 Sängerfest (singer festival) in Nuremberg (again normalized by city population in 1863). All regressions are weighted by a proxy for the comparability of 1863 population data, due to territorial changes (see footnote 39 for detail).
Table 11: Workers’ associations

<table>
<thead>
<tr>
<th>Depend. Variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\textit{ASSOC}_{\text{all}})</td>
<td>0.420***</td>
<td>0.303***</td>
<td></td>
<td></td>
<td>0.293**</td>
</tr>
<tr>
<td></td>
<td>(4.58)</td>
<td>(2.89)</td>
<td></td>
<td></td>
<td>(2.21)</td>
</tr>
<tr>
<td>(\textit{ASSOC}_{\text{workers}})</td>
<td></td>
<td></td>
<td>-0.023</td>
<td>0.061</td>
<td>-0.022</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-0.21)</td>
<td>(0.50)</td>
<td>(-0.16)</td>
</tr>
<tr>
<td>Baseline controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Observations</td>
<td>99</td>
<td>96</td>
<td>99</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.168</td>
<td>0.274</td>
<td>0.003</td>
<td>0.233</td>
<td>0.283</td>
</tr>
</tbody>
</table>

Notes: Standardized beta coefficients; t-statistics in parentheses. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \). \(\textit{ASSOC}_{\text{all}} \) (\(\textit{ASSOC}_{\text{workers}} \)) is the number of all (workers’) associations per 1,000 inhabitants in each city. Baseline controls include the share of Catholics, \(\ln(\text{city population}) \), and the share of blue collar workers, all in 1925.

Table 12: Entry rates and association density – the case of Prussia

<table>
<thead>
<tr>
<th>Dependent variable:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\textit{ASSOC}_{\text{all}})</td>
<td>0.664***</td>
<td>0.199</td>
<td>0.700***</td>
<td>0.342***</td>
<td>0.351*</td>
<td>0.301***</td>
</tr>
<tr>
<td></td>
<td>(6.86)</td>
<td>(1.44)</td>
<td>(6.87)</td>
<td>(3.27)</td>
<td>(1.68)</td>
<td>(3.27)</td>
</tr>
<tr>
<td>Prussia (\times) (\textit{ASSOC}_{\text{all}})</td>
<td></td>
<td></td>
<td>-0.386***</td>
<td>0.122</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(-2.87)</td>
<td>(0.55)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline controls + Prussia</td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Prussia (\times) Baseline controls</td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>49</td>
<td>51</td>
<td>100</td>
<td>49</td>
<td>51</td>
<td>100</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.351</td>
<td>0.259</td>
<td>0.345</td>
<td>0.101</td>
<td>0.383</td>
<td>0.266</td>
</tr>
</tbody>
</table>

Notes: Dependent variable is the average rate of Nazi Party entry (per 1,000 inhabitants) in each city over the period 1925-28 (col 1-3) and 1929-33 (col 4-6). Standardized beta coefficients; t-statistics in parentheses. * \(p < 0.10 \), ** \(p < 0.05 \), *** \(p < 0.01 \). \(\textit{ASSOC}_{\text{all}} \) is the number of associations per 1,000 inhabitants in each city. Baseline controls include the share of Catholics, \(\ln(\text{city population}) \), and the share of blue collar workers, all in 1925. Prussia is a dummy that equals one for cities located in the Prussian state.