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Abstract

This paper proposes a simple theory of production in which the network of input-output

linkages is endogenously determined by the firms’ decisions to operate. Since producers benefit

from having multiple suppliers, the economy features complementarities between the operating

decisions of nearby firms. As a result, tightly connected clusters of producers emerge around

productive firms. In addition, after a firm is hit by a severe shock, a cascade of shutdowns might

spread from neighbor to neighbor as the network reorganizes itself. While well-connected firms

are better able to withstand shocks, they trigger larger cascades upon shut down. The theory

also predicts how the shape of the network interacts with the business cycle. As in the U.S.

data, periods of low economic activity feature fewer well-connected producers and less clustering

among firms. Once calibrated, the model predicts that allowing the network to reorganize itself

in response to shocks leads to substantially smaller variations in aggregate output, suggesting

that endogenous changes in the shape of the production network have a significant impact on

the aggregation of microeconomic shocks into macroeconomic fluctuations.
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1 Introduction

Production in modern economies involves a complex network of specialized producers, each

using inputs from suppliers and providing their own output to downstream production units. The

shape of this network is constantly changing in response to shocks. Cascades of firm shutdowns are

a salient example of this process. If a severe shock pushes a producer to shut down, its neighbors,

now missing a useful input or a valuable customer, might also decide to stop production, thereby

pushing their own neighbors to do the same, and so on. A single shock can thus trigger a cascade of

shutdowns that spreads through the economy.1 While these cascades have a damaging impact on

many firms, they also free economic resources that can now be used by other producers to resume

production. Through this creative destruction process, the firms’ decisions to operate therefore

change the shape of the production network. At the same time, the shape of the network plays

a crucial role in determining how microeconomic shocks propagate through the network to create

macroeconomic fluctuation. To properly understand the origin of these fluctuations, it is therefore

important to have a joint theory of production and endogenous network formation.

This paper proposes a simple theory to understand these economic forces. In the model, a large

number of firms produce differentiated goods using labor and a set of inputs from other producers.

Since production requires the payment of a fixed cost, firms operate or not as a function of economic

conditions. When a firm operates, it makes an additional input available to all of its customers,

thereby creating new input-output links. Together these operation decisions therefore determine

the shape of the production network.

Firms benefit from using a greater variety of inputs into production. This feature of the envi-

ronment creates complementarities between the decisions of nearby producers to operate and has

several implications for the organization of production in the efficient allocation. First, firms that

have multiple suppliers or multiple customers are more likely to operate. Second, the allocation fea-

tures tightly connected clusters of producers. This way, each firm benefits from the inputs provided

by the cluster and provides a valuable good in return, thereby taking advantage of the complemen-

tarities created by the network. Because of this tendency for clustering, a lot of economic activity

occurs in the neighborhoods around the most productive firms while the rest of the network re-

mains mostly inactive. Through this process, the network organizes itself to magnify the impact of

high-productivity firms on the economy while limiting that of their low-productivity counterparts.

Third, a small change in the environment can trigger a large reorganization of the network. For

1Carvalho (2014) mentions the aftermath of the Great East Japan Earthquake of 2011 as an important example of
this dynamics. Carvalho et al. (2014) find that firms inside the affected zone that stopped production because of the
catastrophe had a significant negative impact on their customers and suppliers that were outside of the affected zone.
In contrast, firms inside the affected zone that did not stop production had an insignificant impact on their customers
outside the affected area. Another example of these cascades concerns the 2008 bailout of U.S. car manufacturers.
At that time, the chief executive officer of Ford advocated for the bailout of its competitors, General Motors and
Chrysler. The rationale was that the bankruptcy of these carmakers would push their suppliers to shutter operations
which would adversely affect Ford since suppliers are shared in the industry (Carvalho, 2014).
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instance, a small drop in the productivity of an influential firm can lead to the shutdown of its

whole neighborhood while activity moves to another part of the network.

Two features of the environment make the efficient allocation in this economy challenging to

solve for. First, since the decision to operate a unit is binary, the optimization problem has a

non-convex feasible set and belongs to the class of mixed integer nonlinear problems — a family

of problems that are notoriously difficult to solve (Garey and Johnson, 1990). Second, the com-

plementarities between producers make the objective function non-concave. As a result, usual

numerical algorithms are ineffective and the Karush-Kuhn-Tucker conditions are not sufficient to

characterize a solution. I propose instead a novel approach that involves reshaping the original op-

timization problem, away from potential solutions, such that 1) the reshaped problem can be solved

easily, and 2) the solutions to the reshaped and the original problems coincide. This approach is

expected to work well if the network of potential connections between firms is densely connected.

To verify its robustness, I extensively test the approach on sparsely connected networks and find

that it performs very well in practice.

I calibrate the model to the United States economy. To understand how the forces of the

economy operate to shape the organization of production, it is useful to compare the optimal

network to a completely random one. In contrast to the random network, the optimal network

features 1) more highly connected firms, 2) a higher degree of clustering, 3) a smaller average

distance between firms, and 4) a positive correlation between a firm’s number of customers and its

number of suppliers. The optimal allocation therefore features a more tightly connected network

of producers centered around a few central and highly productive firms. The forces at work in the

economy also affect the distributions of firm-level outcomes. For instance, since the optimal network

organizes production to magnify the impact of high productivity firms and mitigate that of low

productivity ones, the distributions of employment and output show significant positive skewness.

I use the calibrated economy to investigate how cascades of firm shutdowns, resulting from a

single individual shock, propagate through the network. I find that while more highly connected

firms are more resilient to shocks, they also trigger more important cascades when they shutdown.

In the calibrated economy, theses cascades move mostly downstream, from customer to customer.

This result however depends on the elasticity of substitution between intermediate goods entering

production. When inputs are poor substitutes, significant upstream cascades can also occur. These

cascades are the manifestation of the network optimally reorganizing itself in the face of shocks.

As a result, preventing them from occurring leads to losses in aggregate output that are, at the

median, point 35% larger.

As the economy faces many local shocks at the same time, multiple overlapping cascades spread

through the production network, thereby changing its shape and creating aggregate fluctuations.

As a result, the shape of the network differs between recessions and expansions in several ways.

In particular, recessions are periods in which, 1) fewer highly connected firms produce and 2)

3



the amount of clustering in the network is lower. These correlations between the shape of the

production network and the business cycle are also visible in the U.S. data. Overall, expansions are

periods in which production can be efficiently organized in tightly connected groups of producers

centered around influential firms. In contrast, recessions are periods in which creating these tights

clusters is inefficient, perhaps because a highly connected firm is facing a bad shock.

To evaluate the impact of the optimal organization of the network on the size of fluctuations, I

once again compare the optimal network to the random one and find that the standard deviation

of output is more than 35% larger in the random network. This finding highlights the importance

of considering how the network structure of production adapts to shocks to properly understand

the microeconomic origin of aggregate fluctuations.

Literature review

A large empirical literature documents that losing a supplier is disruptive of a firm’s operation.

For instance, Hendricks and Singhal (2005) find that firms facing supply chain disturbances face

an abnormal stock return of –40%. They further find that the impact of the disturbance is long

lasting. Wagner and Bode (2008) survey business executives in Germany who report that supply

side disturbances, including supplier suddenly stopping production, were responsible for significant

disturbances in production. The Zurich Insurance Group (2015) also conducted a global survey

of executives in small and medium enterprises. Of all the respondent, 39% report that losing

their main supplier would adversely affect their operation and 14% report that they would need to

significantly downsize their business, require emergency support or that they would shut down.

This paper relates to a literature that studies how shocks to interconnected sectors contribute

to aggregate fluctuations in exogenous networks (Long and Plosser, 1983; Horvath, 1998; Dupor,

1999; Atalay, 2015).2 Acemoglu et al. (2012) find that sectoral shocks can lead to large aggregate

fluctuations if there is enough asymmetry in the way sectors supply to each other. Acemoglu et al.

(2015a) further show that inter-sectoral linkages can generate tail-risks in aggregate output. This

literature emphasizes the importance of the shape of the network in transmitting idiosyncratic

shocks. In contrast, the current paper studies how endogenizing the shape of the network affects

the size of aggregate fluctuations.

This paper also contributes to a recent literature on endogenous network formation.

Atalay et al. (2011) consider a model in which links between firms are created through random

and preferential attachment. They find that this model is better able to match the properties of

the U.S. data. Oberfield (2013) considers an economy in which producers optimally choose one

input from a randomly evolving set of suppliers, thereby creating a production network. While

the networks in both papers are formed endogenously, the present work considers how the operat-

2See Carvalho (2014) for an overview of the literature on production networks. Bigio and La’O (2016) study how
an economy’s network structure of production influences its response to financial shocks.
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ing status of firms shapes the production network, so that cascades of shutdowns arise and their

impact on aggregate fluctuations can be studied. Carvalho and Voigtländer (2014) consider how

inputs diffuses in a network through input adoption decisions. To do so, they build a model in

which producers direct their search for new inputs to the suppliers of their current neighbors in the

network. Lim (2016) considers how frictions in the creation and destruction of firm-to-firm linkages

affect aggregate output and trade. To my knowledge, the current paper is the first to consider how

the shape of the production network changes over the business cycle.

Baqaee (2016) also studies the impact of cascades of firm shutdowns on the macroeconomy.

To do so, the paper considers an exogenous sectoral network in which the mass of firm in each

sector can vary. This adjustment margin can lead to further amplification of sectoral shocks in

the presence of external economies of scale. In contrast, the current paper considers an economy

without external effects, so that the allocation is efficient, and in which the network describes

connections between individual producers directly. Shutting down a firm therefore removes a node

in the network thereby endogenously changing its shape.

Most of the literature on networks and fluctuations considers economies in which adjustments to

changes in the environment are continuous rather than discrete. Like the present work, some papers

consider how discrete adjustment margins can lead to cascading effects. In the finance literature,

Elliott et al. (2014) and Acemoglu et al. (2015b) study cascades of failures in a financial network.

When a neighboring institution defaults, the connections to its former trading partners are severed,

which might trigger their default in turn.3 Bak et al. (1993) propose a model of production and

inventories with non-convex interactions between neighbors that can generate large fluctuations

from idiosyncratic shocks.

The next section introduces the model and the solution approach. Section 3 highlights some of

the features of the optimal allocation. Section 4 contains a quantitative exploration of the forces

of the model. The last section concludes. All proofs are in the appendix.

2 Model and Solution Approach

There are n units of production, also referred to as firms, indexed by j ∈ {1, . . . , n}. Each

of these units, produces an intermediate good that can be used in the production of a final good

or as an input in the production of other intermediate goods. A final good producer uses a CES

production function with elasticity of substitution σ > 1,

Y =





n
∑

j=1

(

y0j
)

σ−1

σ





σ
σ−1

3See also Blume et al. (2011a) and Blume et al. (2011b) for studies of cascading failures and network formation.
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to convert intermediate goods
{

y0j

}n

j=1
into aggregate output Y . A representative household con-

sumes the final good and supplies L units of labor inelastically.

Firm j has access to a production technology that converts a vector xj of intermediate inputs

and lj units of labor into yj units of good j according to the production function

yj =
A

αα (1− α) 1−α
zj

(

n
∑

i=1

x
ǫ−1

ǫ

ij

)
ǫ

ǫ−1
α

l1−α
j

where xij denotes the intermediate input from firm i, 0 < 1 − α < 1 is the labor intensity, A > 0

is aggregate productivity and zj > 0 is firm-specific total factor productivity. The elasticity of

substitution ǫ > 1 determines the benefit from producing with a wider variety of inputs.

Firm j can use good i only if there exists a connection from firm i to firm j. The set of all

connections is fully described by an n×n matrix Ω such that Ωij = 1 if firm j can use inputs from

i and Ωij = 0 otherwise. Without loss of generality, assume that
∑n

i=1 Ωij ≥ 1 otherwise firm j

cannot produce and we can redefine the economy without it. As it describes the set of inputs that

are usable by each firm, Ω is part of the production possibility frontier of the economy.

A firm can only produce if it is operating, which requires the payment of a fixed cost f ≥ 0, in

units of labor. The vector θ denotes the operating status of the firms, such that θj = 1 if firm j

is operating and θj = 0 otherwise. This fixed cost captures overhead labor, such as managers and

other non-production workers, that is necessary for production. A broader interpretation could

include the cost of fixed structures or any other factor that does not scale with production.4

Together, Ω and θ describe the network structure of production in this economy. While the set

of possible connections Ω is taken as exogenous, the set of active connections evolves endogenously

as economic conditions affect which firms operate. Figure 1a provides an example of the set of

possible connections Ω in a simple economy with six firms. Each arrow represents a connection

Ωij = 1, with the direction of the arrow showing the movement of goods between the firms. The

set of active connections, in blue in Figure 1b, is selected endogenously and depends on the set of

active firms, also in blue.5

4See, for instance, Bresnahan and Ramey (1994) and Hall (2000) for a discussion of the importance of these costs
in explaining plant-level production behavior.

5While the model is kept simple for tractability, it can be extended easily to accommodate heterogeneity in input
shares α, elasticities of substitution ǫ and fixed costs f . With these extensions, the model could feature endogenous
links formation. A link, in this setup, would simply be a firm with an input share close to 1. The operating cost of
this firm-link could be interpreted as the cost of creating a link between two standard firms. In addition, the model
can use permanent shocks to z to capture permanent entry and exit of firms.
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(a) All firms and connections (b) Active firms and connections

Figure 1: Operating decisions determine the shape of the network endogenously

2.1 The Planner’s Problem

Consider the problem PSP of a social planner in this economy.6 The planner maximizes the

utility of the representative household

max
y0≥0, x≥0, l≥0

θ∈{0,1}n





n
∑

j=1

(

y0j
)

σ−1

σ





σ
σ−1

(1)

subject to a resource constraint for each intermediate good

y0j +

n
∑

k=1

xjk ≤
A

αα (1− α) 1−α
zj

(

n
∑

i=1

x
ǫ−1

ǫ

ij

)α ǫ
ǫ−1

l1−α
j , ∀j ∈ {1, . . . , n} , (2)

a resource constraint for labor
n
∑

j=1

lj + f
n
∑

j=1

θj ≤ L, (3)

6I focus on the efficient allocation for a few reasons. First, there is no obvious natural notion of a decentralized
equilibrium in this economy. In addition, for some standard notions of equilibrium, multiple equilibria exist. Oberfield
(2013) shows that the efficient allocation in a model of network formation can be sustained as a pair-wise stable
equilibrium.
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a set of operation constraints

{θj = 0} ⇒ {lj = 0} , ∀j ∈ {1, . . . , n} , (4)

such that a firm can only operate if the fixed cost f is paid, and a set of connection constraints

{Ωij = 0} ⇒ {xij = 0} , ∀i, j ∈ {1, . . . , n}2 (5)

so that there must be a connection from firm i to firm j for good i to be used as input by j.

It is convenient to integrate the operation constraints (4) and the connection constraints (5)

directly into the goods resource constraints (2) such that they become

y0j +

n
∑

k=1

xjk ≤ θj
A

αα (1− α) 1−α
zj

(

n
∑

i=1

Ωijx
ǫ−1

ǫ

ij

)α ǫ
ǫ−1

l1−α
j , ∀j ∈ {1, . . . , n} . (6)

Notice the additions of the terms θj and Ωij in the production function. The term θj imposes that

firm j will optimally only produce goods if θj = 1. Otherwise it would be using valuable resources

to generate no output. Similarly, the addition of Ωij imposes that firm j can only use goods xij

if a connection Ωij = 1 exists. Notice that since θj and Ωij only take values in {0, 1}, these new

terms have no impact on the solution of the problem.

2.2 Solution Approach

To isolate the difficulties that arise in solving PSP , it is useful to first fix the set of operating

firms θ and to solve for the optimal allocation of resources in the exogenous network.

Planner’s problem with exogenous firm status

For a given vector θ, maximizing (1) subject to the constraints (3) and (6) is a convex maximiza-

tion problem and the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize

its solution. Denote by w the Lagrange multiplier on the labor resource constraint (3) and by λj

the Lagrange multiplier on the resource constraint for the jth good (6). Combining the first-order

conditions with the production function yields the following Lemma.7

Proposition 1. The Lagrange multipliers associated with the efficient allocation satisfy

qj = zjθjA

(

n
∑

i=1

Ωijq
ǫ−1
i

) α
ǫ−1

, ∀j ∈ {1, . . . , n} (7)

7I follow Oberfield (2013) in recasting the optimization problem in the q space.
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where qj = w/λj . Furthermore, there is a unique vector q that satisfies (7) such that qj > 0 if firm

j is active and part of a strongly connected set of active firms.

Since, from the first-condition on lj , output can be written as (1− α) yj = qjlj, it is natural

to interpret qj as a measure of labor productivity.8 Equation 7 highlights the importance of the

production network for the labor productivity qj of the firms. In particular, qj increases with the

number and the productivity of firm j’s suppliers. As a result, a productive firm has a positive

effect on all firms that are downstream from it in the production chain.

Equation 7 can be solved by iterating on the mapping. The solution q can then be used to fully

characterize the optimal allocation of resources in the economy. For instance, aggregate output Y

can be computed directly from q.

Lemma 1. Aggregate output in the optimal allocation is given by

Y = Q



L− f

n
∑

j=1

θj



 (8)

where Q ≡
(

∑n
j=1 q

σ−1
j

) 1

σ−1

.

This Lemma shows that aggregate output is equal to the product of aggregate productivity Q

and the amount of labor available after fixed costs have been paid.

Similarly, the vector of labor l used by each firm satisfies

l = (1− α) [In − αΓ]−1

(

q

Q

)◦(σ−1)


L− f
n
∑

j=1

θj



 (9)

where ◦ denotes the Hadamard exponent (each element of q raised to the power σ− 1), In denotes

the n × n identity matrix and where Γ is an n × n matrix with elements Γjk =
Ωjkq

ǫ−1

j∑n
i=1

Ωikq
ǫ−1

i

.9

Γjk captures the relative importance of firm j as a supplier to firm k. Since the Leontief inverse

[In − αΓ]−1 can be written as In + αΓ + (αΓ)2 + . . . , we see that the planner allocates a large

fraction of the labor available after fixed costs have been paid, L − f
∑n

j=1 θj, to firms that are

important suppliers in the production network.

8Note that since yj is in units of goods j, this notion of labor productivity does not correspond to revenue
(measured in units of the final good) divided by labor input.

9See the proof of 1 for the derivation of (9).
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Planner’s problem with endogenous firm status

We now turn to the full planner’s problem in which the operational status θ of the firms is a

choice variable. Combining (7) and (8) we can rewrite PSP as

PSP : max
θ∈{0,1}n,q≥0

Q



L− f

n
∑

j=1

θj





subject to

qj = zjθjA

(

n
∑

i=1

Ωijq
ǫ−1
i

)
α

ǫ−1

, ∀j ∈ {1, . . . , n} (7)

When deciding whether to operate firm j or not the planner compares the cost of the decision with

its benefit. On the cost side, operating j takes away f units of labor that could be used as input

by other firms. On the benefit side, operating j increases Q and therefore increases the efficiency

with which the production network transforms labor into final goods.

Two features of PSP make it hard to solve. First, each variable θj is limited to the binary set

{0, 1}. Second, the objective function is not (quasi) concave. As a result, the standard Karush-

Kuhn-Tucker conditions cannot be used to solve this problem. Using the standard classification of

optimization problems, PSP belongs to the class of Mixed Integer Nonlinear Problems (MINLP).

Their combinatorial nature makes these problems notoriously challenging to solve and they are,

from the perspective of computational complexity theory, NP-Hard (Karp, 1972).

One way to solve PSP is to try each one of the 2n possible vectors θ. For each of them, q can be

found by iterating on (7) and the objective function can then be computed easily. This exhaustive

approach works well but is limited to economies with only a few firms. Indeed, for n large the huge

number of possible θ becomes impossible to handle.

Instead of relying on this computationally intensive approach, I propose to solve PSP by first

relaxing and then reshaping it in a way that makes it easy to solve. To do so, consider the following

alternative relaxed and reshaped version of PSP which we denote by PRR,

PRR: max
θ∈[0,1]n

Q



L− f

n
∑

j=1

θj





where the vector q solves

qj = zjθ
a
jA

(

n
∑

i=1

θbiΩijq
ǫ−1
i

) α
ǫ−1

. (10)

PRR differs from PSP in two important ways. First, the binarity constraint θ ∈ {0, 1}n is now

relaxed to the convex set θ ∈ [0, 1]n. Second, (7) now becomes (10) and includes the reshaping

parameters a > 0 and b ≥ 0. These parameters modify the shape of the objective function, but
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only away from potential solutions of PSP . To see this, remember that any solution of PSP is such

that θj ∈ {0, 1} for all j, so that θaj = θj. Similarly, for the b parameter, if θi = 0 then qi = 0, and

if θbi = 1 then θbi q
ǫ−1
i = qǫ−1

i , such that (7) and (10), and therefore the objective functions of PSP

and PRR, coincide over the set θ ∈ {0, 1}n. As a result, the following proposition holds.

Proposition 2. If θ∗ solves PRR and that θ∗j ∈ {0, 1} for all j, then θ∗ also solves PSP .

This proposition states that if a solution to the relaxed and reshaped problem PRR is such that

each element θj hits a bound, then this solution also solves the original social planner’s problem

PSP . The result follows directly from the fact that the feasible set of PRR contains the feasible set

of PSP and that both of their objective functions coincide when θj ∈ {0, 1} for all j.

The key idea of the approach is to find a and b such that, ideally, the following two properties

hold: i) any solution to PRR is also a solution to PSP , and ii) PRR is easy to solve. Proposition 2

provides conditions under which property i) is satisfied. It turns out that, under certain conditions,

there exists reshaping parameters so that property ii) also holds, as the following proposition shows.

Proposition 3. If 0 < a ≤ (σ − 1)−1, −a (ǫ− 1) ≤ b ≤ 1−a (ǫ− 1) and if the network of potential

connections is complete (Ωij = 1 for all i, j), the the objective function of PRR is log-concave and

the Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to PRR.

This proposition shows that, when the network Ω is sufficiently connected, any feasible point

θ∗ that satisfies the first-order conditions and the complementary slackness conditions is a global

maximum of the objective function and therefore solves PRR. It also shows that the log of the

objective function is concave such that standard numerical algorithms can be used to easily find

the solution.

Importantly, Proposition 3 only provides sufficient conditions for the result. In particular,

section 2.3 shows that, in practice, the complete network assumption can be relaxed substantially

such that the first-order conditions are necessary and sufficient to characterize a solution in a

broader set of networks.

Together, Propositions 2 and 3 offer a convenient way to solve PSP . One can simply solve PRR

and look at the solution θ∗. If θ∗ is such that, for all j, θ∗j hits either 0 or 1, then θ∗ also solves PSP .

If not, then θ∗ does not solve PSP . It is therefore important for the approach to work that the

solutions to PRR are such that θ∗ ∈ {0, 1}n. Fortunately, this can be achieved in large connected

networks if the reshaping parameters take the following values

a =
1

σ − 1
and b = 1−

ǫ− 1

σ − 1
. (⋆)

To see why, it is convenient to consider the first-order conditions of the slightly different problem
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P ′
RR in which (10) is treated as an inequality constraint

P ′
RR: max

θ∈[0,1]n,q





n
∑

j=1

qσ−1
j





1

σ−1



L− f

n
∑

j=1

θj





qj ≤ Azjθ
a
jAB

α
j

where Bj =
(
∑n

i=1 θ
b
iΩijq

ǫ−1
i

)
1

ǫ−1 is the composite input used by firm j.10

The first-order conditions yield

∂qk
∂θk

∂Q

∂qk



L− f
n
∑

j=1

θj



− fQ+
n
∑

j=1

βj

(

∂qk
∂θk

∂Bj

∂qk
+

∂Bj

∂θk

)

∂qj
∂Bj

= µk − µ
k

(11)

where βj is the Lagrange multiplier on the jth inequality constraint and where µk and µ̄k are the

Lagrange multipliers on θk ≥ 0 and θk ≤ 1.11 We see from the equation that θk influences the

objective function through its direct and its indirect impact on the objective function. The direct

impact captures the increase in productivity of firm qk which leads to an increase in aggregate

productivity Q (first term in 11). Increasing θk also lead to higher costs of operation (second

term in 11). The indirect impact of θk operates through its action on the other firms. First, its

impact on qk leads to an increase in the labor productivity of all of k’s customers (first term in

the summed parenthesis). Second, increasing θk also increases the composite input of all of k’s

customers through the reshaping term θbk (second term in the summed parenthesis).

Equation 11 determines the operational status θk of firm k. By the complementary slackness

condition, if its left-hand side is larger than 0 the firm is active (θk = 1) and, similarly, if it is

smaller than 0 the firm is inactive (θk = 0). The key to the reshaping approach is to make the

left-hand side of (11) independent of any firm-specific endogenous variables. The following lemma

shows how this can be done.

Lemma 2. The first-order condition (11) can be written as

zσ−1
k θ

a(σ−1)−1
k F1 (Q,Bk)



L− f
n
∑

j=1

θj



−fQ+zǫ−1
k θ

b−1+a(ǫ−1)
k

n
∑

j=1

βjΩkjF2 (Bk, Bj)
∂qj
∂Bj

= µk−µ
k

(12)

where F1 and F2 are functions that only depend on the aggregates B’s and Q.

To understand how the reshaping approach operates, notice that under the reshaping parameters

10This problem is equivalent to PRR but makes the intuition clearer. The inequality constraint always binds at
the optimum.

11The partial derivatives of qj are to be understood for the binding inequality constraint, i.e. such that
∂qj
∂θj

=

Azjaθ
a−1

j ABα
j and

∂qj
∂Bj

= Azjθ
a
jAαBα−1

j .
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(⋆), the θk’s cancel out from the first-order condition (12). The only remaining impact of θk on the

equation is through the variables B’s and Q. But these variables are aggregate, in the sense that

they are summations over a large number of firms. Therefore, as the number of firms increases,

and the network becomes increasingly connected, they become increasingly independent of θk and,

with them, so does equation (12). In the limit, the marginal benefit of increasing θk, the left-hand

side of (12), is therefore independent of θk itself and depends only on the aggregate state of the

network and on the firm k’s exogenous characteristics. If this marginal benefit is positive, the

planner increases θk until it reaches 1. If it is negative, the planner decreases θk until it reaches 0.

The solution to PRR is therefore such that θk ∈ {0, 1} for all k. Using Proposition 3 we can then

conclude that the solution to PRR also solves PSP .

Example with n = 2

To better understand how the reshaping approach operates, it is useful to consider a simple

economy with two firms and a complete set of potential connections Ω between them. Consider

first the relaxed problem without any reshaping (a = 1, b = 0). The contour plot of its objective

function VR (θ) is shown in Figure 2a. We see that VR is shaped like a saddle with local maxima

at (1, 0) and (0, 1) and local minima at (0, 0) and (1, 1). The planner therefore prefers to have a

single firm operating than to have both, or neither, firms operating. The global maximum is at

θ = (1, 0).

Since VR is not concave, attempts at finding the global maximum will encounter two related

problems. First, since the first-order conditions are not sufficient to characterize the optimum,

finding a solution to the FOCs does not guarantee that this solution is the global maximum.

Second, this problem cannot be solved reliably with standard numerical algorithms. Starting from

an initial point, these algorithms generally operate by following the steepest slope, which can easily

lead to the local minimum at (0, 1).

Consider instead the objective function VRR of the same optimization problem but reshaped

with the parameters ⋆. Figure 2b shows the contour plot of VRR. Notice first that the reshaping has

not changed the value of the objective function in the corners θ ∈ {0, 1}2. As a result, the corner

with the highest utility according to VRR is also the corner with the highest utility according to VR.

Second, we see that the reshaping basically stretched the objective function between the corners

so as to transform the non-concave function VR into the concave function VRR. The first-order

conditions are now sufficient to characterize a solution and, starting from any point (θ1, θ2) ∈ [0, 1]2,

a simple numerical algorithm like gradient ascent will converge to the global maximum at (0, 1).

Since the reshaping preserves the ranking of the corners, (0, 1) is also the global maximum of VR

and therefore of PSP .
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Figure 2: Example: reshaping the objective function

From the example of Figure 2, one can get some intuition about how the reshaping approach

makes the problem easier to solve. Let us first consider the role played by the parameter a. Suppose

that we begin the optimization at the local maximum θ = (1, 0) in Figure 2a and are now looking

for alternative allocations in its neighborhood to improve the objective function. Moving towards

the global maximum at θ = (1, 1) incurs a marginal cost proportional to fQ. The marginal benefit

of this move is, however, proportional to ∂Q/∂θ2 ∝ θσ−2
2 without the deformation. As a result, for

θ2 small, the marginal benefit is close to 0 and it declines with the elasticity σ — operating a new

firm provides little benefit if the goods are highly substitutable. Increasing θ2 is thus not locally

advantageous and the optimization converges erroneously to the local maximum. Including the

reshaping parameter a changes the incentives to increase θ2 around θ2. In particular, the marginal

benefit is now proportional to ∂Q/∂θ2 ∝ θ
a(σ−1)−1
k . Under the parameter values (⋆), this benefit is

constant and of the same order of magnitude as the cost fQ, which helps the optimization algorithm

to move towards the global maximum. A similar intuition applies for the reshaping parameter b,

but the argument involves the addition of an inputs into the production of intermediate goods.

2.3 Testing the Solution Approach

The theoretical results of the last section show that the reshaping approach finds the correct

solution to PSP when the number of firms is large and the network is sufficiently connected. To

verify that it also works well when these assumptions are relaxed, I randomly generate a large

set of networks with various parameters. I then compare the allocation found by the reshaping

approach to the correct solution given by exhaustively evaluating the utility provided by the 2n

possible networks. As explained earlier, this exhaustive search becomes impossible to conduct for n
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large so that the comparisons are limited to relatively small networks.12 Nevertheless, since small

and sparse networks are the ones for which we expect the reshaping approach to fail, the exercise

provides a useful test of its performance.

The results are presented in Table 1. We see that the relaxing and reshaping approach works

remarkably well even for small and sparsely connected network. The algorithm attributes the

correct operational status to more than 99.8% of the firms. The approach also finds output values

that are, on average, within 0.002% of the correct value. In contrast, attempting to solve for

the efficient allocation by only relaxing the problem yields more than 15% of the firms with the

wrong operational status and the average error in output can be close to 1%, a large number when

considering business cycle fluctuations.13

Number of firms n

8 10 12 14

A. With reshaping
Firms with correct θj 99.9% 99.9% 99.9% 99.8%
Error in output Y 0.00039% 0.00081% 0.00174% 0.00171%

B. Without reshaping
Firms with correct θj 84.3% 83.2% 82.3% 81.3%
Error in output Y 0.84% 0.89% 0.93% 0.98%

Notes: I construct networks with parameters f ∈ {0.05/n, 0.1/n, 0.15/n}, σz ∈ {0.34, 0.39, 0.44}, α ∈ {0.45, 0.5, 0.55}, σ ∈
{4, 6, 8} and ǫ ∈ {4, 6, 8}. For each possible combination of the parameters, 1000 different economies are created. For each
economy, productivity is drawn from log (zk) ∼ iid N (0, σz) and Ω is drawn randomly such that a firm has on average five
possible incoming connections. As a result, the networks Ω have different degrees of sparsity. All draws are independent. The
network is redrawn until it is strongly connected. Appendix C.1 describes the algorithm used to create Ω. A network is kept
in the sample only if the first-order conditions converge to a solution for which θ hits the bounds.

Table 1: Testing the reshaping approach on small networks

It is also possible to test the relaxing and reshaping approach on large network. While the

true solution to the planner’s problem is unknown in this case, we can verify whether there exist

benefits from deviating from the allocation given by the reshaping approach. In particular, I verify

whether changing the status of a single firm improves the utility of the planner. I keep repeating

this procedure as long as there are deviations to be found and then compare this deviation-free

solution to the original one given by the reshaping approach.

Since this procedure is computationally costly, I consider only large economies that satisfy the

calibration presented in Section 4.2. The results are presented in Table 2. Again, the reshaping

approach performs very well. After all the possible deviations are accounted for, 99.8% of the

firms have kept their status and aggregate output has changed by a negligible amount. In contrast,

without reshaping the planner’s objective function, the deviations reveal that almost 28% of the

12Appendix C.2 describes the algorithms used to solved for the efficient allocation.
13Since the problem is solved numerically, any algorithm would be expected to converge on the wrong solution

from time to time. For instance, the algorithm might converge to a point that is not a solution but for which the
first-order conditions are satisfied within numerical tolerance.
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firms were assigned the wrong operational status and the error in aggregate output amounts to

about 0.7%. While this test does not guarantee that the reshaping approach finds the correct

efficient allocation, it provides a good indication that there are no obvious mistakes in its solution.

With reshaping Without reshaping

Firms with correct θj 99.8% 72.1%
Error in output Y 0.00028% 0.69647%

Notes: I simulate 200 different networks Ω and productivity vectors z that satisfy the properties of the calibrated economy (see
Section 4.2). I run the procedure described in the text on each of them and report average results.

Table 2: Testing the reshaping approach on large networks

3 Economic Forces at Work

We now explore how the economic forces at work in the model shape the network structure of

production and how this shaping, in turns, interacts with firm-level outcomes.

3.1 Selection of firms

The problem PSP highlights the two main forces that push the planner to operate a firm.

First, from the expression for aggregate output (8), we see that the planner is likely to operate

high-q firms. Doing so contributes directly to aggregate output and therefore to the welfare of the

household. Second, from the recursive expression determining q (7), we see that the planner is

likely to operate a firm if doing so increases the q’s of other firms, thereby indirectly increasing

the household’s utility. Because of these two motives, the planner tends to operate firms with high

total factor productivity z. Not only do these firms produce high-q goods for the production of the

final good, they also provide valuable inputs to their customers, which in turn increases these firms’

contribution to aggregate output and benefits their own customers, and their customers’ customers

and so on.

In addition, the planner also operates firms that are advantageously positioned in the network.

For instance, operating a firm with many outgoing active connections benefits a large number of

other firms and these firms customers, etc. Similarly, we know from (7) that a firm with many

incoming connections is likely to have a high q, making it attractive to operate. As a result of

these two channels, the planner is likely to operate firms that are well-connected, either in terms

of suppliers or customers, even if their total factor productivity z is low.

3.2 Complementarities and clustering of activity

Since the benefit of operating a firm is larger if it is well-connected, the economy features

complementarities in operation decisions between nearby firms. To maximize the benefit from these
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complementarities, the planner tends to organize economic activity in tightly connected clusters of

operating firms. In this configuration, each firm j benefits from the presence of operating neighbors

that, in turn, benefit from a more productive firm j. This recursive process reinforces the labor

productivity q of all the members of the cluster and makes this way of organizing production very

efficient.

A simple example is useful to understand the economic forces that make clustering more or less

desirable. Suppose that the planner wants to operate n firms and can decide to do so by operating

clusters of m fully-connected firms, where each producer supplies to the m−1 other firms.14 Which

amount of clustering m is preferred? We can easily compute the productivity q of each firm in an

m-cluster. Assuming that firms share the same z = 1 for simplicity, symmetry imposes that all

firms have the same q. From (7), we find that q = (m− 1)
α

1−α
1

ǫ−1 and from (8) we can compute

total output

Y = n
1

σ−1 (m− 1)
α

1−α
1

ǫ−1 (L− fn) .

Since this expression is increasing in m, the planner prefers to operate a unique tightly connected

group of firms instead of a large number of connected pairs of firms. This preference for clustering

is also more important when the share α of intermediate inputs in production is large and when

the elasticity of substitution ǫ between these inputs is low. Under these conditions, the planner

values additional connections more, which leads to a heighten desire for clustering.

When we introduce shocks to z, the optimal network tends to cluster economic activity around

the most productive firms. Doing so allows the planner to magnify the impact of high-z firms.

Figure 3 presents an example of this process in an economy in which the network Ω consists of two

groups of highly connected firms linked together by a pair of connections. The figure shows the

same economy under four different total factor productivity vectors z. We see that, as the previous

example showed, economic activity is concentrated in either the top or the bottom group of firms,

the one with the highest-z firm, while its leaves the other group inactive.

3.3 Small shock and large reorganization

In the efficient allocation, a small variation in the environment can lead to a large reorganiza-

tion of the network. This unusual feature arises because of the non-convex nature of the planner’s

problem. To determine the optimal allocation, the planner essentially compares the 2n poten-

tial network configurations and selects the one providing the highest utility. As the environment

14For simplicity, let us assume that n is large enough and that it is divisible by m. While the current example
might seem abstract it fits in the framework outlined in the last section. The whole economy would be formed of
groups of n firms which various degree of clustering. The exercise would then be about which of these groups the
planner would prefer to operate.
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Figure 3: The optimal network features clusters of economic activity

changes, say a firm’s z increases, a previously optimal configuration is replaced by a new one that

can be substantially different.

Figure 4 shows an example of this mechanism. The primitives of the two networks are identical

except that in the economy on the left the central node is slightly more productive than in the

economy on the right. While the drop in productivity from left to right is negligible, it triggers

a large reorganization of the network structure of production. On the left, the planner prefers to

make goods transit through the productive central firm while on the right it creates a loop of active

firms to avoid the slightly less productive central firm.

While the shape of the network changes substantially, aggregate output is barely affected by the

drop in productivity. Indeed, the planner reorganizes the network precisely so that the impact of the

bad shock is as small as possible. Even though it leaves output mostly unaffected, the reorganization

of the network can have a large impact on the distributions of firm-level variables. In this example,

for instance, the dispersion in labor productivity, output and employment collapses after the shock.

A negligible shock can therefore have a large impact on cross-producer distributions.
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Figure 4: A small shock triggers a large reorganization of the economy

4 Quantitative Exploration

To further investigate the mechanisms at work in the economy, I calibrate the model to the

United States. I then characterize the shape of the production network and explain how its shape

is influenced by various economic forces. I then consider how the optimal design of the production

network affects firm-level outcomes, and how large cascades of firm shutdowns can arise after a

severe shock to an important producer. Finally, I investigate how the optimal adjustment of the

network in response to shocks influence aggregate fluctuations.

4.1 Network data

Bringing the model to the data requires taking a stand on what constitutes a unit of production

in this economy. While a natural interpretation is that a producer corresponds to a plant, I am

unaware of readily available data about input-output linkages at the plant level in the U.S. There

is however firm-level data available through the Compustat Segment database. These data were

built from public firms’ financial disclosures and span the period 1979-2014. They contain firms’

own reports of their major customers.15 Cohen and Frazzini (2008) and Atalay et al. (2011) use

these data to construct the network structure of production in the U.S.16 I use the outcome of their

analyses to calibrate the model and verify some predictions of the theory.

Information about the network structure of production is also available for Japan. The mar-

15Firms report these customers in accordance with Financial Accounting Standards No. 131. A major customer is
defined as a firm responsible for purchasing at least 10% of the seller’s revenue. Some firms sometimes report smaller
customers.

16I thank the authors for sharing their data. Their samples cover the periods 1980 to 2004 and 1976 to 2009,
respectively. Since the customer information reported by the firms contains many typos and various abbreviations,
both papers use a combination of automatic algorithms and manual matching to create the production networks. As
these approaches are imperfect, I use both datasets to verify the predictions of the theory. The Compustat Segment
data is also used by Kelly et al. (2013) and Wu (2016) among others.
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keting firm Tokyo Shoko Research has built a large dataset containing supplier-customer linkages

for almost all Japanese firms with more than 4 employees. I also refer to some properties of this

network, as reported by Saito et al. (2007) and Bernard et al. (2015).

4.2 Parametrization

I normalize A = 1 and L = 1. For the share of intermediate goods in the production function,

I follow Jorgenson et al. (1987) and sets α = 0.5. Jones (2011) surveys the literature on the share

of intermediate goods in different countries and also suggests α = 0.5 as a good benchmark.

Broda and Weinstein (2006) uses disaggregated trade data for the U.S. to estimate the elasticity

of substitution σ between product varieties. Their estimates vary greatly across sectors, levels of

aggregation as well as time periods. At the highest level of disaggregation (10-digit level), the mean

estimate for the 1990-2001 period is 12.6 while the median is 3.1. At the 5-digit level, the mean

estimate is 6.6 while the median is 2.7. I set σ = 6 as an average of these estimates. The empirical

literature provides little guidance about the elasticity of substitution between intermediate inputs

at the firm level. I therefore set ǫ = σ as default and provide robustness analysis along the way.17

I assume that the log of the productivities zit are drawn in an i.i.d. way from a normal distribu-

tion with mean zero and standard deviation σz. Many studies document a very large dispersion in

producer productivity. For instance, Bartelsman et al. (2013) measure the dispersion in firm-level

physical productivity in a number of countries and find σz = 0.39 for the U.S. I adopt this number

for the calibration. Importantly for our purpose, their estimation technique controls for the usage

of intermediate inputs.

There is no consensus in the literature about the value of overhead labor f . Since employment

in management occupations account for about 5% of total employment in the U.S., I set f so that

f × n = 5%.18

We are left with the unobserved set of potential links Ω to parametrize. So that the results

shown below do not rest on one specific network, the simulations involve multiple networks Ω.

They are all drawn randomly so that the distribution of the number of potential suppliers follows

a power law with a shape parameter of αΩ = 1 — the celebrated Zipf’s law.19 By parametrizing Ω

in this way, the observed in-degree distribution (the number of suppliers) in the efficient allocation

is close to a power law with a shape parameter that is near the one observed in the data, as we

17While no estimate is available at the firm level, Atalay (2015) finds that the elasticity of substitution between
inputs at the sector level is likely smaller than one so that inputs are complement. This elasticity is too extreme for
the current model — losing a single supplier would lead to no production at all. Nonetheless I consider an economy
with a low elasticity ǫ as a robustness exercise.

18These fixed costs have often been estimated using models of firm turnover. For instance, Bartelsman et al. (2013)
estimate a model of firm entry and exit on the manufacturing sector and estimate that overhead labor accounts for
14% of total employment in the industry. This number is likely to be lower for firms outside of manufacturing. Higher
fixed costs do not affect the conclusions of this section significantly but require solving economies with more firms,
which is numerically costly.

19The results of this section are similar if the network is built with the approach of Atalay et al. (2011) instead.
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will see below. In addition, Zipf’s law arises from a wide variety of processes. For instance, in the

network literature, it emerges as a limiting case of the Simon model (Simon, 1955) and the Price

model (de Solla Price, 1965).20 For these reasons, Zipf’s law seems to be a natural choice for the

shape of Ω.21 Finally, I set n = 3000 to roughly match the average number of firms in a year in

the Atalay et al. (2011) dataset.

Table 3 displays the parameters of the calibrated economy. Using this parameterization, I create

32 matrices Ω.22 For each of them, I then draw 400 productivity vectors z and solve for the efficient

allocation in each case. The next sections describe various features of these simulated economies.23

Parameter Value

Average productivity A = 1
Labor supply L = 1
Size of the network n = 3000
Share of intermediate goods α = 0.5
Elasticity of substitution for final goods σ = 6
Elasticity of substitution for intermediate goods ǫ = 6
Standard deviation of individual productivities σz = 0.39
Fixed cost of operation f = 0.05/n
Set of possible connections Ω see text

Table 3: Parameters of the calibrated economy

4.3 The shape of the network

We now consider the shape of the network of active connections in the efficient allocation.

Figure 5 shows the distributions of the number of suppliers (in-degree) and the number of costumers

(out-degree) in the benchmark economy (blue circles).24 To properly highlight the shape of these

distributions, the figure uses a log-log scale and plots the complementary cumulative distributions

20More generally, Zipf’s law also arises from proportional random growth (Gabaix, 2009) and in assignment models
with complementarities (Geerolf, 2016).

21In addition to the connections drawn from Zipf’s law, I also add three potential connections to all firms. I do this
for two reasons. First, it greatly helps the first-order conditions to converge, making the efficient allocation faster to
solve and therefore allowing for a larger number of simulations. Second, empirical evidence from Bernard et al. (2015)
finds that firms with few connections are more abundant than the power law would predict. Since these additional
connections have a minimal impact on the highly-connected firms of the economy, those that are important for
aggregate fluctuations, removing them has a minimal impact on the simulations.

22See Appendix C.1 for a description of the algorithm used to create Ω.
23I discard and redraw simulations for which iterating on the first-order conditions does not converge to a point

θ such that θj ∈ {0, 1} for all j. All moments in the next sections are computed on each network Ω first and then
averaged across networks.

24Another measure often used in the network literature is that of the centrality of a node. I computed the centrality
vector in this economy using the same measure as Carvalho (2014). The distribution of centrality is close to a power
law with shape parameter 1.39. Carvalho (2014) estimates this parameter in the U.S. data at the sector level and
finds a value of 1.4. This centrality measure plays a role very similar to the out-degree variable and is therefore
omitted from the analysis.
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(CCDF) on the vertical axis. We see that the distributions are roughly linear in that space,

suggesting that they are close to power laws.

In-degree and out-degree distributions have also been found to roughly follow power laws in the

data. Atalay et al. (2011) and Saito et al. (2007) find that the empirical in-degree distributions for

U.S. and Japanese firms are also well approximated by power laws with shape parameters 1.37 and

1.3.25 The corresponding number in the benchmark economy is 1.43.26 The efficient allocation is

therefore able to replicate this important property of empirical networks of production.

To see how the in-degree and out-degree distributions are affected by features of the environ-

ment, Panels (a) and (b) also show an economy with lower elasticity of substitution between goods

ǫ (red squares). In this case, the value of an extra input to a firm is higher and the planner naturally

creates a more densely connected network. From the figure, we see that all firms are essentially

gaining customers and suppliers so that both the in-degree and out-degree distributions roughly

shift to the right. The number of active firms also increases substantially.27
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Figure 5: Distribution of the number of suppliers and the number of customers

25Atalay et al. (2011) reports that the mean of the number of suppliers in their sample is 3.67 which amounts to
a shape parameter of 1.37. They also document a departure from the power law for firms with many suppliers. They
provide an explanation that relies on firms exit and links reattachment. This departure is less visible in the Japanese
data (Bernard et al., 2015).

26All shape parameters of power law distributions are estimated using the approach of Gabaix and Ibragimov
(2011). To properly capture the shape of the right tail of the distributions, I exclude observations with less than
three connections from the sample.

27When, instead, the share of intermediate inputs α is larger, inputs matter more for production and the planner
connects the high-q firms with more customers. This mechanism is also at work in Oberfield (2013).
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Comparison with a random network. To understand what features of a network are more

desirable for efficiency, it is useful to compare the optimal network, the one that arises in the

efficient allocation, to a completely random one.28 Table 4 shows the shape parameters of the

in-degree and out-degree distributions for the benchmark economy in this random network as well

as in the optimal one. Since its in-degree and out-degree distributions possess fatter tails (smaller

shape parameters), the optimal network features a larger fraction of highly connected suppliers

and highly connected customers than the random network. These shifts in the distributions occur

because high in-degree firms and high out-degree firms are particularly valuable. The former,

because of their many suppliers, have high productivity q which the planner values. The latter

provide valuable inputs to many customers thereby increasing these firms’ productivity q. As a

result, when designing the network optimally, the planner tends to operate these influential firms

more than their poorly-connected counterparts.

Optimal network Random network

A. Pareto shape parameters
In-degree 1.43 1.48
Out-degree 1.37 1.48

B. Clustering coefficient 0.027 0.018
Notes: The distances and the clustering coefficients are computed in the undirected graphs to avoid the many infinite

distances that arise in the directed graphs. Infinite distances (arising from unconnected parts of the network) are excluded.

Table 4: Shape of the optimal and random networks

The optimal and the random networks also feature different degrees of clustering between firms.

To quantify this difference, I use the standard global clustering coefficient commonly used in the

network literature. This measure considers triplets of connected nodes, and compares the total

number of such triplets that are fully connected with the number of triplets that are not. As Table

4 shows, this clustering coefficient is 47% larger in the optimal network than in the random one,

indicating that designing the network optimally involves creating more tightly connected clustered

firms, as the theory suggested.29

Another distinctive feature of the optimal network is the correlation between the in-degree

and out-degree of a firm. In the random network, these those quantities are uncorrelated by

construction. In the optimal network, however, the correlation is positive. The planner constructs

the network in this way for two reasons. First, increasing the number of suppliers of a firm with

high out-degree increases the productivity q of its many customers, which directly leads to higher

output. Second, since firms with many suppliers are more productive, the planner seeks to benefit

28The random network is built by drawing a random set of active firms θ for each network Ω. I redraw θ until the
random network has as many active firms as the optimal one. Except for θ, all the other quantities in the random
network economy are chosen optimally.

29A consequence of this increased clustering is that firms are closer to one another: the average distance between
two firms, in terms of number of connections, is 15% smaller in the optimal network.
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as much as possible from this high q by increasing their number of customers. Together, these two

forces work to create the positive correlation observed in the simulated data.

4.4 Firm-level outcomes

We now consider the implications of the endogenous formation of the network for firm-level out-

comes. Table 5 shows the ordinary least-square coefficients from regressing the labor productivity

q and the employment l of firms on their number of suppliers and customers.

The regressions find that firms with more suppliers and more customers also employ more

workers. Again, this finding is not surprising in view of equation 9. Firms with many suppliers are

high-q firms and the planner therefore allocates a lot of labor to them (ratio q/Q in the equation).

High out-degree firms also receive more labor for them to supply to their many customers (term

Γ in the equation). The allocation therefore features a similar correlation between the number

of neighbors and output. Saito et al. (2007) and Bernard et al. (2015) find that firms with many

suppliers and many customers are also larger in terms of sales in the Japanese data.

The role of a firm’s in-degree and out-degree on its productivity q is less clear. In the first

two columns of Table 5, the regressions show a positive relationship between in-degree and q but a

negative relationship between out-degree and q. The first result is not surprising. Because of the

production function, firms with many suppliers have higher q. The second result, however, emerges

because of the positive selection of high out-degree firms. Since they are important providers

of goods in the network, the planner tends to operate them even if they have low productivity.

In contrast, low productivity firms with few customers do not operate. This selection process is

responsible for the negative correlation observed in the simulated data.

The last two columns of the table confirm this conclusion. They show the same ordinary

least-square coefficients as the first two columns but with the addition of firms fixed effects in

the regressions. The coefficients therefore capture how changes in a firm’s in- and out-degrees

are related to its employment l and its labor productivity q. All coefficients are now positive.

In particular, firms with many suppliers are now associated with a larger q. To understand why,

consider a firm that is subject to a positive shock z, the source of variation in this regression.

Because of the shock, this firm has a larger q than usual. To maximize the benefit of this q

the planner tends to operate producers that are downstream from the firm, thereby increasing its

out-degree, thereby creating this positive correlation.

The results of Table 5 highlight a two-way interaction between the shape of the network and

firm-level outcomes. On the one hand, the shape of the network affects firm-level variables; for

instance, firms with many suppliers have larger q’s. On the other hand, firm-level variables affect

the shape of the network itself; for instance, the planner increases the number of customers of

productive firms. Table 5 shows how this interaction creates correlations at the firm level.
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Dependent variable Employment l Labor prod. q Employment l Labor prod. q

In-degree 0.36 0.08 0.75 0.15
Out-degree 0.44 -0.05 0.64 0.03
Firm fixed effects no no yes yes

Notes: Ordinary least-square regressions. Standard errors are negligible. All variables are in logs. Labor productivity is q and
employment is l. Firm fixed effects are included to control for firm positions in the network of potential connections Ω.

Table 5: Suppliers, customers and firm-level outcomes

The same interaction also has important implications for the distributions of firm-level out-

comes. One way to understand the role it plays is to once again compare the optimal network

and the random network economies. To do so, Table 6 shows moments of the cross-sectional dis-

tributions of labor productivity q and employment l in both economies. Consider skewness first.

The table shows that the distributions in the optimal network economy are substantially skewed

to the right. In contrast, the same distributions are essentially symmetrical in the random network

economy. The endogenous adjustment of the network in response to shocks is responsible for this

difference through two channels. First, the planner tends to shutdown firms with low productivity.

This selection mechanism makes the left tails of the distributions thinner. Second, the planner

reorganizes the network to magnify the impact of high-z firms by also operating their suppliers.

Doing do increases these firms’ labor productivity q and, through the optimal allocation of labor,

their employment. Doing so pushes these firms, already in the right tails of the distributions, even

further to the right. Organizing the network efficiently therefore implies a thicker right tail in the

firm-level distributions and the positive skewnesses.

These selection and magnification mechanisms also compete to influence the standard deviations

of the distributions. In the calibrated economy, the selection dominates and the optimal network

economy features more concentrated distributions. Figure 6 shows the effects of these forces on the

distributions of labor productivity q.

Labor prod. q Employment l

A. Optimal network economy
Standard deviation 0.29 1.24
Skewness 0.39 0.85

B. Random network economy
Standard deviation 0.44 2.21
Skewness -0.03 -0.05

Notes: All variables are in logs.

Table 6: Moments of firm-level outcomes in the optimal and random network economies
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Random network

Figure 6: Distributions of the log of labor productivity q

4.5 Cascades of firm shutdowns

A severe productivity shock to an important firm in the network can trigger a cascade of firm

shutdowns. Indeed, if the productivity of the targeted firm falls too much, the planner prefers

to shut it down and to reallocate the labor from the fixed cost to more productive parts of the

network. The neighbors of the targeted firms than lose a customer or a supplier, which lowers

their contribution to aggregate output, and might lead to them shutting down as well. The same

reasoning applies to the targeted firm’s second neighbors and so on. As this cascade of shutdowns

propagates through the network it can affect a large fraction of the firms in the economy.

To evaluate the importance of these cascades, I simulate a large number of economies in which

a randomly selected producer is forced to shutdown by a sufficiently large negative z shock. Figure

7 shows the impact of the shuttered firm’s exit on its neighbors. The plot in Panel (a) represents

the cumulative number of downstream producers shutting down as we move further away from the

targeted firm. Similarly, Panel (b) shows how upstream firms are affected. As we can see from the

figure, a severe shock to an average firm (solid blue curves), is likely to lead to the shutdown of about

three firms in the whole economy. While firms that are close to the shock are disproportionately

affected in terms of their probability of shutting down (there are few firms there), the bulk of the

shutdowns happen for firms that are far from the initial shock (where many firms are).

The situation is different if we consider only shocks to the largest suppliers in the network: firms

in the 99th percentile of the out-degree distributions (dashed red curves). These shocks trigger the

shutdown of many producers close to the distressed firm. Comparing Panels (a) and (b), we see

that their impact propagates downstream, through the firms’ customers, whose labor productivity

q is directly affected by the shutdown of their supplier. The figure also shows shocks to the largest

customers in the network: firms in the 99th percentile of the in-degree distribution (dashed green

curves). While these shocks primarily trigger the shutdown of the suppliers of the targeted firm,

their overall impact on the economy is not very different from a shock to an average firm.

Two key parameters, the elasticity of substitution between inputs ǫ and the share of inputs

into the production function α, have a large impact on the magnitude of the cascades and how
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Notes: The distance d measures the shortest path, in terms of numbers of connections, from the targeted firm. “High in-degree
firms” refers to the 99th percentile of the in-degree distribution and similarly for out-degree firms.

Figure 7: Cascades of firm shutdowns in the benchmark calibration

they propagate. For instance, a higher α increases the importance of the network in determining

output. Shocks therefore lead to a larger reorganization of the network and, as a result, the

cascades are more important. Lowering the elasticity of substitution ǫ also affects the cascades in

important ways. In particular, shocks to the largest customers can now trigger important cascades

of shutdowns that propagates upstream, from supplier to supplier. This stark difference from the

benchmark simulations can be explained by understanding why the planner operates small firms in

this economy. Since ǫ is small compared to σ the planner derives utility from them mostly as the

providers of intermediate input to the high-q firms and not so much for their direct contribution to

final goods production. As a result, if one of the largest customers (a high-q firm) shuts down, the

planner is likely to shut its small suppliers down as well, thereby triggering an upstream cascade.

In contrast, in the benchmark economy where ǫ = σ the planner values the direct contribution to

the final good from these small providers similarly to their contribution to the productivity of the

high-q firms. They are therefore more likely to remain if one of their large customer shuts down.

Appendix A provides additional details and figures for cascades in these alternative economies.

In order to trigger a cascade, a firm must be hit by a shock strong enough to shut it down.

Some firms are however much more resilient to shocks then others. To see this, Table 7 provides the

probability that a one standard deviation z shock shuts down the firm — a measure of its resilience.

Unsurprisingly, the largest customers and suppliers in the economy are much more likely to survive

a bad shock than the average firm. Since these firms are important contributors to output, either

directly or through their contributions to other firms, the planner keeps them active even when they

are facing very low z’s. Together, Figure 7 and Table 7 highlight a tradeoff between the resilience
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of a firm and its impact on the network upon failure: well-connected firms resist well to shocks but

trigger the shutdown of many of their neighbors when they stop production.30

Probability of firm shut down

All firms 92%
High out-degree firms 20%
High in-degree firms 56%

Notes: “High in-degree firms” refers the 99th percentile of the in-degree distribution and similarly for out-degree firms. Firms
are subject to a 1 standard deviation z shock.

Table 7: Resilience of targeted firms to shock

These cascades are efficient and are simply the manifestation of the optimal reorganization of

the network in response to shocks. One way to estimate their importance in that regard is to

consider how much more output would have fallen if the network was unable to reorganize itself

after a shock. In order to do so, I compute the distribution of the ratio between the drop in output

in an alternative rigid network to the one in the original flexible network. At the median point, the

drop in output is 35% more severe in the rigid network, which suggests that allowing the network

to reorganize itself in response to shocks is a powerful mechanism to prevent deep output losses.31

4.6 Aggregate fluctuations

We now consider how the optimal design of the network influences aggregate fluctuations. To

do so, it is useful to first examine how the shape of the network varies with aggregate output.

Table 8 provides the standard deviation of various measure of the shape of the network in the

optimal allocation and their correlation with output. We see that, in booms, the tails of the in-

degree and out-degree distributions become thicker, indicating that the economy features more

highly-connected firms during expansions than during recessions. The clustering coefficient is also

positively correlated with output. The network structure of production is therefore more tightly

connected when output is high.

To understand why the planner adjusts the network in this way, consider the origin of fluctua-

tions in this economy. Since the model does not feature aggregate shocks, expansions are mostly

driven by positive shocks to influential firms in the network — those in the right tail of the in-

degree and out-degree distributions — and by the ability of the planner to cluster production

tightly around them. Recessions are therefore periods in which these influential firms suffer from

bad shocks and are shut down, bringing with them the cluster that was built around them. This

mechanism generates the correlations in the first column of Table 8.

The last two columns of Table 8 show that these correlations between the shape of the net-

30Appendix A shows that firms in the α = 0.75 and ǫ = 3 economies are much more resilient to shocks.
31In contrast, Baqaee (2016) proposes a model where, because of external effects, cascades can be inefficient.
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work and output are also present in the two datasets on the U.S. production network constructed

by Cohen and Frazzini (2008) and Atalay et al. (2011). As we can see from the table, the U.S.

production network is more clustered and features more highly-connected firms during expansions

than during recessions. These findings confirm that the predictions of the theory have support in

the data.

Correlation with output

Model Data

CF (2008) AHRS (2011)

A. Power law shape parameters
In-degree -0.10 -0.10 -0.21
Out-degree -0.31 -0.24 -0.13

B. Clustering coefficient 0.47 0.70 0.15
Notes: All time series are in logs and linearly detrended. The clustering coefficients are computed on the undirected graphs.
Data output is annual real gross domestic product over the same time period as the network sample.

Table 8: Aggregate fluctuations and the shape of the network

To quantify the impact of the optimal network on fluctuations, Table 9 shows the standard

deviation of output Y , labor productivity Q and productive labor L− f
∑

j θj in the optimal and

random network economies. We see that allowing the shape of the network to adapt optimally

to the z shocks leads to a substantial decline in aggregate fluctuations: the standard deviation of

output is 1.5 percentage point larger in the economy with a random network.32 The table also

shows that this decline can be attributed almost entirely to lower fluctuations in Q and, therefore,

to changes in the shape of the network.

The intuition behind this decline in fluctuations is as follows. In the random network allocation,

the shape of the network is fixed at a given θrand such that all fluctuations are coming from

productivity z. The network θrand might turn out to be close to what the optimal network would

be for some z. In these cases, output will reach a relatively large value. For many other z’s,

however, θrand is far from the optimal network such that output is then low. As a result, the

standard deviation of output is quite large in the economy with a random network. In contrast,

in the optimal network allocation, the planner compares all the 2n possible networks θ and selects

the one that provides the maximum output for each particular vector z. This selection process

provides substantial smoothing on fluctuations.33,34

32Unsurprisingly, the planner can also reach a higher level of output by adjusting the shape of the network in
response to shocks. The average difference between the optimal network and the random network is about 31%.

33This intuition is made formal by extreme value theory. For instance, the variance of the maximum Ym of a large
number m of independent standard normal random variables decreases at a rate of lnm for m large.

34The decline in fluctuations generated by the optimal organization of the network depends on various features
of the economy. For instance, in an economy with lower elasticity of substitution between inputs ǫ, the value of
a connection is larger and the planner therefore creates a tightly connected network of firms that changes little in
response to productivity shocks. The change in the standard deviation of output between the optimal and random

29



Output Labor Prod. Prod. labor
Y Q L− f

∑
j θj

Optimal network 0.039 0.039 0.0014
Random network 0.054 0.054 0

Notes: All variables are in log. In the random network economy, the standard deviation of productive labor is 0 by construction.

Table 9: Standard deviation of aggregates in the optimal and random network economies

5 Conclusion

This paper proposes a theory of endogenous network formation and aggregate fluctuations. Be-

cause of a complementarity between firms’ operating decisions, production tends to be organized in

tightly connected clusters of producers centered around the most productive firms. Long cascades

of firm shutdowns can be triggered by a severe shock to an important producer. The theory also

predicts how the shape of the network evolves with aggregate output. In particular, expansions

feature more clustering among firms as well more highly connected producers. I find that these

correlations are also present in the U.S. data. Finally, the theory predicts that the optimal reorga-

nization of the network in response to shocks is responsible for a substantial decline in the size of

aggregate fluctuations. These findings highlight the importance of considering the evolution of the

production network to further understand the origin of aggregate fluctuations.

The paper also provides a novel reshaping approach to solve optimization problems with discrete

adjustment margins and complementarities. Using this approach, it is possible to quickly find the

optimal allocation in economies that were previously impossible to solve. The approach could

potentially be useful in a broad range of economic environments, including models with menu

costs, or fixed costs in investment or in hiring.

For the sake of clarity and tractability, the mechanisms of the model were exposited in a simple

framework but several extensions may be worth investigating. In particular, it would be interesting

to understand how requiring the payment of a fixed cost to change the operating status of a firm

would affect the main mechanism of the model. In addition, a modified version of the model in

which firms are financial institutions and links in the network are financial contracts might shed

some light on the formation of financial networks and the propagation of financial distress.
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A Cascades under different parameters

This appendix provides additional figures and tables to understand how cascades propagate in

economies with different parameters. See 4.5 for a discussion.

Probability of firm shutdown

Benchmark α = 0.75 ǫ = 3

All firms 92% 82% 32%
High out-degree firms 20% 8% 0%
High in-degree firms 56% 19% 15%

Notes: “High in-degree firms” refers to the 99th percentile of the in-degree distribution and similarly for out-degree firms. Firms
are subject to a 1 standard deviation z shock.

Table 10: Resilience of targeted firms to shock with alternative parameter values
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Notes: The distance d measures the shortest path, in terms of numbers of connections, from the targeted firm. “High in-degree
firms” refers to the 99th percentile of the in-degree distribution and similarly for out-degree firms.

Figure 8: Cascades of firm shutdowns with alternative parameter values
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B Proofs

This section contains the proofs of the lemmas and propositions stated in the main text of the

paper.

B.1 Determination and Uniqueness of q

An intermediate step in the proof of the uniqueness of q uses the following definition of R-

concavity.

Definition. (Kennan, 2001) A function g : Rn → R
n is radially quasiconcave (“R-concave”) if

g (x) = 0 and x > 0 and 0 ≤ λ ≤ 1implies g (λx) ≥ 0. If (in addition) 0 < λ < 1 implies g (λx) > 0,

then g is strictly R-concave.

In addition, we also need the concept of a quasi-increasing function.

Definition. (Kennan, 2001) A function g : Rn → R
n is quasi-increasing if yi = xi and yj ≥ xj for

all j implies gi (y) ≥ gi (x) .

The following Lemma is used as an intermediate step to prove the uniqueness of the vector q.

Lemma 3. Consider the mapping g : Rn → R
n defined as

gj(p) = (zjA)
ǫ

(

n
∑

i=1

Ωijp
ǫ−1

ǫ

i

)α ǫ
ǫ−1

− pj.

Then f is strictly R-concave.

Proof. Suppose that there exists a p∗ > 0 such that g (p∗) = 0. Then, for 0 ≤ λ ≤ 1,

gj (λp
∗) = (zjA)

ǫ λα

(

n
∑

i=1

Ωij (p
∗
i )

ǫ−1

ǫ

)α ǫ
ǫ−1

− λp∗j

≥ (zjA)
ǫ λ

(

n
∑

i=1

Ωij (p
∗
i )

ǫ−1

ǫ

)α ǫ
ǫ−1

− λp∗j

≥ λgj (p
∗)

≥ 0

with strict inequality for 0 < λ < 1 since 0 < α < 1 and
∑n

i=1Ωij ≥ 1, which completes the

proof.

Proposition 1. The Lagrange multipliers associated with the efficient allocation satisfy

qj = zjθjA

(

n
∑

i=1

Ωijq
ǫ−1
i

) α
ǫ−1

, ∀j ∈ {1, . . . , n} (7)
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where qj = w/λj . Furthermore, there is a unique vector q that satisfies (7) such that qj > 0 if firm

j is active and part of a strongly connected set of active firms.

Proof. The first-order conditions with respect to lj and xij are

λj (1− α) yj = wlj (13)

λjαθj
Azj

αα (1− α) 1−α





n
∑

j=1

(Ωijxij)
ǫ−1

ǫ





α ǫ
ǫ−1

−1

l1−α
j Ωijx

ǫ−1

ǫ

ij = λixij .

Combining these first-order conditions with the production function yields

xijλ
ǫ
i = λǫ

jα

(

zjθjA

(

λj

w

)1−α
)

ǫ−1

α

yj. (14)

Plugging this equation and the first-order condition for lj back into the production function yields

(7).

To prove the uniqueness of q, I rely on a result by Kennan (2001). Consider the change of

variable pj = qǫj and, since qj = 0 if θj = 0, let us only consider the j’s such that θj > 0. The

recursive equation becomes

pj = (zjA)
ǫ

(

n
∑

i=1

Ωijp
ǫ−1

ǫ

i

)α ǫ
ǫ−1

. (15)

Denote the right-hand side of that equation by fj (p) and define the function g : Rn → R
n as

g (p) = f(p) − p. Then, from Lemma 3, we now that g is strictly R-concave. Note also that g is

quasi-increasing.

Consider the mapping h : R → R
n defined as h(s) = f (1s) where 1 is a vector full of 1. Then

h (s) is strictly concave, strictly increasing and differentiable with h (0) = 0, lims→0 h
′ (s) = ∞ and

lims→∞ h′ (s) = 0. As a result, there exist b > a > 0 such that h (a) > a and h (b) < b. Then

Theorem 3.1 and Theorem 3.2 of Kennan (2001) apply and 15 has a unique positive fixed point p∗.

There is therefore a unique positive q∗ that satisfies (7). It is such that q∗j =
(

p∗j

) 1

ǫ
for θj > 0 and

j is part of a strongly connected set,35 and q∗j = 0 otherwise. Note that the proof goes through if

we include the reshaping constant in (7).

35This assumption is necessary to be sure that the firm has access to at least one input.
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B.2 Efficient Allocation with Exogenous Firm Status

Lemma 1. Aggregate output in the optimal allocation is given by

Y = Q



L− f

n
∑

j=1

θj



 . (8)

where Q ≡
(

∑n
j=1 q

σ−1
j

) 1

σ−1

.

Proof. The first-order condition on y0j yields

y0j =
(qj
w

)σ
Y.

Raising both side of this equation to the power σ−1
σ and summing across firm we find that w = Q,

so that the aggregate labor productivity is equal to the shadow value of labor. Using the first-order

conditions (13) and (14) into the resource constraints (2), we find

y0j +
n
∑

k=1

xjk − yj ≤ 0

y0j +

n
∑

k=1

Ωjk

(

qj
qk

)ǫ

α

(

zkθkA

(

1

qk

)1−α
)

ǫ−1

α qklk
1− α

−
qjlj
1− α

≤ 0

y0j +
n
∑

k=1

Ωjkq
ǫ
j

α

1− α

(

zkAθk
qk

)
ǫ−1

α

lk −
qj

1− α
lj ≤ 0

which, taking the other variables as fixed, is a linear equation in l. Combining with the first-order

condition on y0j we find

(

qj
Q

)σ−1 Y

Q
=

1

1− α

[

lj −

n
∑

k=1

Ωjkq
ǫ−1
j α

(

zkAθk
qk

)
ǫ−1

α

lk

]

. (16)

Define the n× n matrix Γ with elements

Γjk = Ωjkq
ǫ−1
j

(

zkAθk
qk

)
ǫ−1

α

.
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Using (7) we can write Γjk as

Γjk = Ωjk (qj)
ǫ−1

(

zkAθk

θkAzk
(
∑n

i=1Ωikq
ǫ−1
i

)
α

ǫ−1

)
ǫ−1

α

=
Ωjkq

ǫ−1
j

∑n
i=1Ωikq

ǫ−1
i

.

Summing (16) across firms, we get

Y

Q
=

1

1− α







L− f
n
∑

j=1

θj



− α
n
∑

k=1

∑n
j=1Ωjkq

ǫ−1
j

∑n
i=1 Ωikq

ǫ−1
i

lk





=



L− f

n
∑

j=1

θj



 .

where I used the resource constraint on labor, which completes the proof.

We can derive all the relevant quantities in the allocation by using (16). Beginning by rewriting

the equation in matrix form

(

q

Q

)◦(σ−1) Y

Q
=

1

1− α
[In − αΓ] l.

Inverting this equation36, we find the labor allocation

l = (1− α)
Y

Q
[In − αΓ]−1

(

q

Q

)◦(σ−1)

.

Returning to the first-order condition on labor we can find the output of each firm

yj =
1

1− α
ljqj

=
1

1− α
(1− α)Y [In − αΓ]−1

(

q

Q

)◦σ

.

and (14) we find the amount of goods transiting between any two firms

xij =

(

qi
qj

)ǫ

α

(

zjθjA

(

1

qj

)1−α
)

ǫ−1

α

yj.

36If no self-connection are allowed, Ωjj = 0 for all j, then [In − αΓ]T is strictly diagonally dominant (since the
columns of Γ sum to 1 and 0 < α < 1) and it is therefore invertible. Since the transpose of an invertible matrix is
invertible, [In − αΓ] is also invertible. In the numerical exercises, In − αΓ is always invertible.
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B.3 Reshaping approach

We are interested in the concavity of of the objective function of PRR which we denote VRR :

[0, 1]n → R
+ defined as

VRR (θ) =





n
∑

j=1

(qj (θ))
σ−1





σ−1

L− f

n
∑

j=1

θj



 (17)

where qj is implicitly defined as

qj (θ) = zjθ
a
jA

(

n
∑

i=1

θbiΩij (qi (θ))
ǫ−1

) α
ǫ−1

. (18)

Proposition 2. If θ∗ solves PRR and that θ∗j ∈ {0, 1} for all j, then θ∗ also solves PSP .

Proof. From the assumptions of the proposition, assume that θ∗ ∈ {0, 1}n solves PRR. By con-

struction, the objective function VRR of PRR and the objective function VSP of PSP coincide over

θ ∈ {0, 1}n. Therefore VRR (θ∗) = VSP (θ∗). Since the feasible set of PRR, θ ∈ [0, 1]n, contains the

feasible set of PSP , θ ∈ {0, 1}n, it must be that VSP (θ∗) ≥ VSP (θ) for θ ∈ {0, 1}n, otherwise θ∗

would not be a solution to PRR. Since θ∗ maximizes VSP on the set θ ∈ {0, 1}n it must be that θ∗

solves PSP , which completes the proof.

Proposition 3. If 0 < a ≤ (σ − 1)−1, −a (ǫ− 1) ≤ b ≤ 1−a (ǫ− 1) and if the network of potential

connections is complete (Ωij = 1 for all i, j), the objective function of PRR is log-concave and the

Karush-Kuhn-Tucker conditions are necessary and sufficient to characterize a solution to PRR.

Proof. The proof first finds conditions under which VRR is log-concave. Raising both sides of (18)

to the power ǫ− 1, multiplying them by θbj and summing across firms we find that

n
∑

i=1

θbi (qi (θ))
ǫ−1 =

(

∑

θ
a(ǫ−1)+b
j (Azj)

ǫ−1
)

1

1−α

so that

qj = zjθ
a
jA

(

n
∑

i=1

θ
a(ǫ−1)+b
i (Azi)

ǫ−1

)
1

ǫ−1

α
1−α

.
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Using the expression for VRR (θ), we find that

log (VRR (θ)) =
1

σ − 1
log









n
∑

j=1

(

zjθ
a
jA
)σ−1





(

n
∑

i=1

θ
a(ǫ−1)+b
i (Azi)

ǫ−1

)
σ−1

ǫ−1

α
1−α





+ log



L− f
n
∑

j=1

θj





=
1

σ − 1
log





n
∑

j=1

(

zjθ
a
jA
)σ−1



+
1

ǫ− 1

α

1− α
log

(

n
∑

i=1

θ
a(ǫ−1)+b
i (Azi)

ǫ−1

)

+ log



L− f
n
∑

j=1

θj





Under the assumptions of the proposition on a and b, the exponents on θ are all between 0 and 1

so that the first two summations are concave functions of θ. The last summation is linear in θ so it

is concave. Since the log of a concave function is concave, we have that log (VRR) is also a concave

function of θ. Since, in addition, the constraint set θ ∈ [0, 1]n is convex and the Slater’s qualification

condition is obviously satisfied, the Karush-Kuhn-Tucker conditions are necessary and sufficient to

characterize an optimal solution to the maximization of log (VRR (θ)) on the set θ ∈ [0, 1]n. Since

log is a monotone transformation, a solution to this problem also solves PRR.

Lemma 2. The first-order condition (11) can be written as

zσ−1
k θ

a(σ−1)−1
k F1 (Q,Bk)



L− f

n
∑

j=1

θj



−fQ+zǫ−1
k θ

b−1+a(ǫ−1)
k

n
∑

j=1

βjΩkjF2 (Bk, Bj)
∂qj
∂Bj

= µk−µ
k

(12)

where F1 and F2 are functions that only depend on the aggregates B’s and Q.

Proof. Consider the term

∂qk
∂θk

∂Q

∂qk
= zkaθ

a−1
k ABα

k ×





n
∑

j=1

qσ−1
j





1

σ−1
−1

qσ−2
k

= zkaθ
a−1
k ABα

k ×Q2−σ (zkθ
a
kAB

α
k )

σ−2

= zσ−1
k θ

a(σ−1)−1
k F1 (zk, Q,Bk) .
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Similarly, for the term in (11) that is inside the summation

∂Bj

∂θk
+

∂qk
∂θk

∂Bj

∂qk
=

1

ǫ− 1
B2−ǫ

j bθb−1
k Ωkjq

ǫ−1
k + azkθ

a−1
k ABα

k ×B2−ǫ
j θbkΩkjq

ǫ−2
k

= B2−ǫ
j θb−1

k Ωkjq
ǫ−1
k

(

a+ b
1

ǫ− 1

)

= zǫ−1
k θ

b−1+a(ǫ−1)
k ΩkjBj

(

ABα
k

Bj

)ǫ−1(

a+ b
1

ǫ− 1

)

= zǫ−1
k θ

b−1+a(ǫ−1)
k ΩkjF2 (Bk, Bj) .

Substituting these two expressions in (11) yields the result.

C Algorithms

C.1 Network Creation

Random network

For a given number of firms n and a threshold t a connection Ωij = 1 is created if U < t where

U ∼ iid Uniform ([0, 1]). In practice, t is set to t = c/n such that on average a firm is connected to

c other firms. If a firm has no connection, the network is discarded and a new one is drawn.

Scale Free Network

I use the algorithm of Catanzaro et al. (2005). The idea is to create a number of stubs, or

half-connections, drawn from power law (PL) distributions on each node and then link the stubs

together.

For each firm j ∈ {1, . . . , n} draw a number of in-connections cinj ∼ iid PL (β) where β is

the shape of the distribution. Similarly, draw a number of out-connections coutj ∼ iid PL (β). If
∑

j c
in
j 6=

∑

j c
out
j , repeat the draws. Stack the in-connections in a list listin and the out-connections

in an another list listout. For each element i ∈ listin, randomly assign an element from j ∈ listout.

If Ωij = 0, set Ωij = 1 and remove i and j from their respective list. If not, draw another j from

listout. Repeat the procedure until both lists are empty. If the lists are not empty and no new

connections can be created, repeat the draws.

C.2 Solving for the Efficient Allocation

Exhaustive search

This algorithm performs an exhaustive search of the 2n possible vectors θ ∈ {0, 1}n. For each

θ, iterate on equation 7 to find q. Then compute Q and the value of the objective function Y using
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8. The algorithm then picks the θ∗ with the largest Y . This algorithm is guaranteed to find the

global maximum of PSP but it is impossible to use for large n. In practice, it takes about 1 minute

for n = 17 to check the 131072 possible vectors θ on a 4 GHz Intel Core i7 processor. This time

roughly doubles for each additional firms.

Iterating on the first-order conditions

A convenient way to solve for the optimal allocation using the deformation approach is to iterate

on a modified version of the first-order conditions of the log of PRR. The algorithm is as follows:

1. Initialize the 0-th iteration with ∆µ0
k = µ0

j − µ̄0
j = −1 for all k.

2. For step p:

(a) Using the complementary slackness condition set θpk = 1 if ∆µp
k ≤ 0 and θpk = 0 if

∆µp
k > 0

(b) Iterate on (10) to find qp

(c) Find
λp
k
qp
k

θp
k

by solving the following linear equation derived from the first-order conditions:

(

zkAB
α

ǫ−1

k

)σ−1

∑n
j=1 q

σ−1
j

+ α (zkA)
ǫ−1Bα

k

n
∑

j=1

Ωkj
θj
Bj

qjλj

θj
=

λkqk
θk

where Bj =
(
∑n

i=1 θ
b
iΩijq

ǫ−1
i

)
1

ǫ−1 is the composite of intermediate inputs.

(d) Compute ∆µp+1
k using the following equation derived from the first-order conditions

f

L− f
∑n

j=1 θj
=

1

σ − 1

qkλk

θk
+

α

ǫ− 1

(

1−
ǫ− 1

σ − 1

)

(zkA)
ǫ−1Bα

k

n
∑

j=1

Ωkj
θj
Bj

qjλj

θj
+∆µk.

(e) Repeats steps (a) to (d) until convergence.
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