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Abstract

We analyze matching markets with stochastic characteristics: agents’ payoff-relevant character-

istics are realized after matching takes place, and matches are formed based on ex-ante attributes

that affect the distributions of ex-post ones. This generates stochastic sorting patterns and naturally

gives rise to ex post mismatch and correlation in realizations due to selection. We derive conditions

for positive and negative sorting in the standard setting with transferable utility, as well as in the

more complex case with nontransferable utility, such as risk sharing and moral hazard problems. In

addition to complementarity in the match output function, the conditions for assortative matching

now also depend on the properties of the stochastic order of the distributions of the agents’ ex post

characteristics. We provide two applications of the model: one analyzes mismatch in the labor mar-

ket for executives, and the other decomposes the sources of increased inequality of married household

into marital and stochastic sorting.
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1 Introduction

In many economic environments, match formation takes place with limited information. For example in

the labor market, it is often argued that labor is an experience good (Nelson (1970), Jovanovic (1979)):

firms hire workers whose education level is known, but their true productivity is revealed only after

a significant period of time has passed. In this paper, we extend the canonical Beckerian matching

model to allow for stochastic characteristics. Agents are heterogeneous, but their characteristics upon

matching are noisy predictors of their payoff-relevant ex post attributes. This setting therefore affords a

useful reinterpretation of the standard matching problem: each agent is characterized by a conditional

distribution of the ex post type, and thus the allocation problem can be thought of as one of matching

distributions, or stochastic sorting.1 In the labor market example, if the ex ante characteristic is

education and the ex post one is productivity, then the distribution of productivity of those with

an MBA from Chicago is different from that of those with a degree from Northern Illinois. Hence,

with sorting based on education, matched partners are pairs of distributions over productivities. This

stochastic sorting logic extends to other environments such as marriage, risk sharing or education, where

there is ample evidence of uncertainty.2

An important feature of our model is that, even if there is assortative matching based on ex ante

types, there will be equilibrium mismatch in ex post types. While on average they are less productive,

some graduates from lower ranked schools are likely to stand out. Because they were matched based only

on the average quality of their college, this implies that given the actual realization of their type, their

allocation to a job is not optimal ex post. Matches are formed between pairs that ex post contradict the

equilibrium properties of the deterministic Beckerian model. This is an appealing feature of the model

since mismatch is a universal characteristic of the data in any application. Very often, this is dealt with

by assuming there is some additive measurement error, drawn from a particular distribution.3 In our

setting, the noise not only determines the mismatch, but it is an integral part of the determination of

equilibrium sorting patterns. This is the main contribution of our analysis.

By focusing on a static setup with one-dimensional characteristics, we can accommodate features

that would be intractable in a search or a multidimensional model, such as risk sharing and moral

hazard. In addition, we derive novel results about sorting patterns. For example, there can be negative

sorting due to distributional properties despite the match surplus being supermodular. Also, selection

due to matching gives rise to interesting patterns of dependence in ex post types across matches.

1The Becker (1973) model, extended to incorporate search goods (Nelson (1970)’s other good category), has become
one of the workhorse models in the labor literature (see for example Shimer and Smith (2000)). Yet, there is little
foundational analysis of sorting with experience goods beyond some models with additive or match-specific shocks. In the
seminal Jovanovic (1979) learning model, labor is both an experience good and a search good, but there is no sorting.

2See Athey, Katz, Krueger, Levitt, and Poterba (2007) and Conley and Önder (2014) who analyze the performance
of economics PhD students and assistant professors and who find that there is a substantial amount of uncertainty. For
example, the top graduate from North Carolina performs better as an assistant professor than the number two or three
from MIT, even though the distribution of MIT graduates dominates that of North Carolina.

3While we do not per se think of the stochastic outcomes as measurement error, they can be interpreted as such.
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We derive general conditions on distributions as well as on the properties of the match payoff

function that induce monotone matching (positive or negative assortative matching). We do so both in

the standard transferable utility (TU) world, where agents transfer utility at a constant rate, and in the

nontransferable utility (NTU) case, where the rate at which agents transfer utility can vary. Intuitively,

the results differ depending on the stochastic order assumed for the conditional distributions of ex post

types. For the two textbook orders – first-order stochastic dominance (FOSD) and increase in risk (IR)

– we derive appropriate complementarity properties of the match payoff that yield monotone sorting.

We first derive a general characterization result on sorting patterns under TU, which involves condi-

tions on match output and the ex-post distribution of types that lead to positive assortative matching

(PAM) and negative assortative matching (NAM). In particular, when we specialize the result to con-

ditionally independent ex-post types whose distributions are ordered by FOSD, we obtain that PAM

(NAM) emerges if and only if the match output function is supermodular (submodular) in ex-post

types. This subsumes Becker’s deterministic model as a special case when distributions are degenerate,

for then FOSD holds trivially. If instead the stochastic order is IR, then PAM (NAM) obtains if and

only if match output complementarities (that is, its cross partial derivative with respect to ex-post

types) is supermodular, (submodular) in ex-post types. We provide an interpretation in terms of risk

attitudes when agents differ by the riskiness in their distributions.

We pay particular attention to the stochastic sorting patterns that emerge in our settings, since they

are useful in economic applications.4 Suppose that an econometrician only has data on ex-post types

realizations of matched pairs. Under FOSD, she would find a cloud of pairs of ex-post types that have

a monotone trend (positive if PAM, negative if NAM). That is, the covariance of ex-post types will be

positive for PAM and negative for NAM, despite the absence of correlation within each matched pair.

This is due to the selection induced by the matching pattern ex ante.5

In the more challenging case of NTU where agents can transfer utility but at varying rates, a matched

pair faces a nonlinear Pareto frontier (see Legros and Newman (2007)). The presence of uncertainty

in the model brings to the forefront a risk-sharing problem between risk averse partners, namely, that

of dividing the match output in a way that shares risks efficiently. Following the work by Ackerberg

and Botticini (2002) on landowners in early Renaissance Tuscany, it has long been recognized that

an important motive for pairwise matching is risk sharing. Schulhofer-Wohl (2006), Chiappori and

Reny (2005) and Legros and Newman (2007) have modeled matching under uncertainty among risk

averse agents. Whereas this literature so far has been concerned with the allocation problem of agents

with different preferences, we analyze the distinctive case of matching agents with different conditional

distributions of ex post types, i.e., they differ in their risky endowments. We derive a general result for

4What follows apply to both TU and NTU models.
5The pattern is more subtle for IR, since under PAM high riskiness individuals are matched together and so are low

riskiness ones. Therefore, what an econometrician will observe is that high or low realizations of ex-post types on one
side of the market are associated with similarly extreme realizations on the other side, while intermediate realizations are
clustered with intermediate ones. The opposite is true under NAM.
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the case of hyperbolic absolute risk aversion utility function (HARA), which subsumes as special cases

the most common utility functions used in applications. We show that monotone sorting still depends

on the properties of ex-post types distributions and the match output function, suitably modified to

account for risk aversion. We derive several classes of primitives under which PAM or NAM obtains.

Besides risk sharing, the literature on NTU models has also paid attention to how incentives interact

with matching (see Ackerberg and Botticini (2002), Serfes (2006), and Legros and Newman (2007)).

We analyze another NTU setting that adds moral hazard to the risk sharing problem. Keeping in mind

the applied motivation that guides this project, we build a tractable and empirically implementable

variation of the principal-agent model of Holmström and Milgrom (1987). We embed it in a matching

problem where principals who are heterogeneous in their technology (both ex ante and ex post) match

with workers who are heterogeneous in their marginal productivity of effort (both ex ante and ex post).

Principals match with agents before the realization of worker and firm types and sign a contract. Since

effort is not contractible, the contract is contingent on the realization of output and hence the firm

type. The optimal contracting pins down the ex ante matching pattern as well as the ex post payoffs.

We derive explicit expressions for wages and profits, and the conditions under which there is positive

or negative assortative matching. The distribution of worker and firm types jointly determine whether

there are complementarities in output, as well as the extent of the ex post mismatch. This setup is well-

suited for identifying the technological features of a matching market. Unlike the deterministic matching

model, there is variation in the observed match outcomes, because mismatch occurs in equilibrium. As

a result, once we know the technology – the match surplus function as well as the distribution –, we

can quantify the extent of the complementarities between different matched types.

We illustrate our stochastic sorting model with two applications. First, we use the principal-agent

set up to analyze the matching of CEOs to firms. Using Compustat data on CEO compensation and

firm valuation, we estimate the underlying technology, match surplus and distribution of ex post types.

Like in Terviö (2008) and Gabaix and Landier (2008), we find that the wage variation for executives is

mainly driven by the variation in the characteristics of the firms where they work. The CEOs themselves

are only marginally different, but a CEO whose decisions affect the sales of a firm that is 100 times

larger will as a result have an equally proportional impact on firm revenues compared to a CEO in

the small firm. As a result, these marginal differences between CEOs translate into huge differences

in compensation. But skills and performance are also subject to uncertainty. The novel insight here

is that there is a large amount of mismatch due to this uncertainty, which is costly in terms of lost

output. While CEOs are fairly similar compared to each other ex ante, their ex post realization is very

different from what was expected ex ante. Our results indicate that firms should be more concerned

about the adequate selection of CEOs than about incentive provision.

Second, we use the general framework to analyze the determinants of the rise in household inequality

of married couples. We perform a standard decomposition exercise that distinguishes between the

sources of inequality that are due to marital sorting based on ex ante characteristics (education) and
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stochastic sorting based on ex post characteristics (earnings). We find that over 80% of the increase in

household inequality is due to stochastic sorting. This is mainly driven by the fact that the variance of

individual earnings – and to a lesser extent, the correlation of earnings – have increased significantly.

The role of marital sorting is much less pronounced, and it is mainly driven by the fact that females

have overtaken males in educational achievement. This accounts for 13%. Ex ante mismatch has barely

changed and hence does not contribute to the change in household income inequality.

Our work is related to a vast literature on assortative matching. Existing matching models incorpo-

rate mismatch in different ways. First, models of random search with two-sided heterogeneity exhibit

equilibrium mismatch (e.g., Shimer and Smith (2000) or Gautier and Teulings (2004)). This is due to

the inability to meet new trading partners fast enough, and to the random and undirected nature of

meetings between agents. Given the opportunity cost of delay, agents are willing to accept a less than

perfect partner. The implication of these models is that while there is mismatch, the model predicts

a sharp demarcation of the range of matches: mismatches occur only within a region bounded below

by the reservation type of each agent and above by the largest type that accepts each agent. This is

often hard to reconcile with observed data. Chade (2006) gets beyond this by considering a matching

model with search frictions and noisy types, albeit in a strictly nontransferable utility setting.6 Second,

mismatch may be due to unobserved heterogeneity. For example, when types are multidimensional and

at least one dimension is not observed to the econometrician, then the observed outcome appears like

mismatch (see for example Choo and Siow (2006), Galichon and Salanié (2010) and Lindenlaub (2013)).

From the agents’ viewpoint, however, there is no mismatch since they observe the entire bundle of the

characteristics of the partners. By contrast, in our model ex ante and in expectation there is perfect

matching, but ex post mismatch is realized also for the matched agents.

Finally, there are a number of interesting issues that we have not analyzed, but that are nonetheless

very promising for future research. First, we do not allow for the possibility of rematching. Upon

the realization of mismatch of their ex post types, agents would typically mutually prefer to form new

matches if allowed to do so. As a result, the existing realized matches would be unstable. When such

rematching is completely frictionless, the problem trivially reduces to a sequence of Beckerian static

matching models. If instead we realistically assume that there is some cost, then only those for whom

the mismatch is sufficiently large will be willing to incur the cost, and we conjecture that our insights

will be robust in this case. This is akin to the search model of Eeckhout and Kircher (2011) who use

mismatch to identify complementarities. Second, we assume there is complete information: uncertainty

is symmetric as no agent knows anyone’s ex post type. The extension to asymmetric information seems

important to pursue, but it is also likely to be nontrivial given the well-known difficulties (see for

6A search model that is also related to our setting is Cheremukhin, Restrepo-Echavarria, and Tutino (2016), who
analyze targeted search where agents choose distributions over possible match partners, which results in search frictions
and mismatch. Their mismatch, which is the result of the strategic choice of agents, is stochastic in nature, like ours. Other
models with dynamic matching and shocks but no frictions such as those in Anderson and Smith (2010) and Anderson
(2015) are stochastic in nature but they do not exhibit mismatch.
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example Guerrieri, Shimer, and Wright (2010)) of matching models with incomplete information.

2 The Model Setup

Consider a matching market with two populations (workers and firms, or men and women) each of

measure one, whose agents seek to match pairwise for productive purposes with agents from the other

population. These populations are heterogeneous: in one of them each agent has a trait x ∈ [x, x], dis-

tributed according to the cumulative distribution function (cdf) Γ(x); similarly, in the other population

an agent’s characteristic is a scalar y ∈ [y, y] distributed according to Ψ(y).

We call x and y the agents’ ex-ante traits, which are observable at the matching stage. There is,

however, uncertainty about agents’ ex-post types, which are payoff-relevant and realized after matching

takes place. A matched pair (x, y) draws ex post types (ω, σ) from the compact set [ω, ω] × [σ, σ]

distributed according to a cdf H(ω, σ|x, y) with density h(ω, σ|x, y).7 The marginal distributions are

given by F (ω|x) with density f(ω|x) and G(σ|y) with density g(σ|y), respectively. Sometimes we will

specialize the analysis and focus on the conditional independence case h(ω, σ|x, y) = f(ω|x)g(σ|y). Also,

to avoid technical complications, we assume that f , g, and h and twice continuously differentiable.8

These ex-post types determine match output q(ω, σ), which is four times continuously differentiable,

nonnegative, and strictly increasing in each argument.9 For instance, in the marriage application in

Section 4.2, x and y are the partners’ education, while ω and σ denote their incomes. Education is

observable at the time of the match, and is a noisy predictor of a partner’s potential income.10

Matching is based exclusively on the ex-ante types x, y, taking into account the distribution of

ex-post types ω, σ. We assume that agents can freely make (contingent) transfers among themselves,

although they need not be able to transfer utility at a constant rate. Indeed, we will examine instances

of both transferable and nontransferable utility (TU and NTU). Our equilibrium notion is standard,

namely, stability, which is equivalent to the core in our setting. That is, an equilibrium will consist of

a matching of the two populations and an assignment of (expected) utilities such that no individual

agent or pair can block the matching. This allocation, moreover, can be decentralized as a competitive

equilibrium. Let µ : [x, x] → [y, y] denote the (measure-preserving) equilibrium matching function.

If µ is monotone in x, then there is positive assortative matching (PAM) when µ is increasing, and

negative assortative matching (NAM) when µ(x) is decreasing. Under PAM, from market clearing, the

7The compact support can be relaxed as long as the density is bounded, something we do sometimes below.
8 Although we focus on the continuum of signal relizations and ex ante characteristics, it is straightforward to replace

integrals by sums plus some minor technical details to adapt all the results to the discrete case as well. Also, some of the
strong differentiability assumptions we impose can be relaxed at the cost of more technical detail.

9The results are easier to interpret when q is not a function of the ex ante types, but the model can accommodate this
case as well and we do so in the CEO application below. For example, if x indexes the university an MBA graduates from
and ω is a measure of realized productive ability, then output produced can be determined not only by ω, but also by the
initial type x: having gone to Harvard provides access to a network that affects future productivity.

10In our model with no rematching or continuation after the realization of the types, one can interpret the type as either
match specific or as permanent (just like the distinction between firm-specific and general human capital). Also, we could
interpret ex ante and ex post types backwards: for example, x could be a signal of an unknown attribute ω.
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allocation satisfies Γ(x) = Ψ(µ(x)) for all x. Under NAM, it satisfies Γ(x) = 1−Ψ(µ(x)) for all x.11

Notice that agents match based on x and y, taking into account the distributions of ex-post types. An

alternative interpretation of the model is that it matches distributions {F (·|x)}x∈[x,x] and {G(·|y)}y∈[y,y].
Clearly, how we order the distributions (as functions of x and y, respectively) will affect the conditions

for PAM and NAM. We will focus on the two most commonly used stochastic orders in economics,

first-order stochastic dominance (FOSD) and increase in risk (IR).12 FOSD is a natural generalization

of the standard matching model à la Becker with scalar types to the case of stochastic types. Under

FOSD, better types x have distributions that are on average better. In Becker, the type distribution

is degenerate and increasing types x and y trivially satisfy FOSD. IR instead is a notion of higher

dispersion in outcomes, and thus of increasing risk.

3 Stochastic Sorting under TU and NTU

We first analyze the case of TU and derive general conditions for sorting, which are fairly intuitive

with FOSD and IR, both commonly used in economic applications. If the applied researcher is only

interested in analyzing the ex ante sorting patterns, the TU setting is most insightful and we use it

to analyze the contribution of marital sorting to household inequality in one of the applications below.

If, however, one also needs properties of ex post transfers, then TU is not ideal, as utility is linear in

money and thus only expected transfers are pinned down. We therefore analyze the NTU setting, which

delivers the functional form of ex post transfers as part of the solution. The presence of uncertainty

implies that NTU entails an efficient risk sharing problem. We derive results for a large class of risk

sharing problems. In addition, we enrich the NTU environment by adding incentives, and study a

model that matches principals and agents under moral hazard. The latter provides us with a flexible

framework for empirical work in the labor market, which we apply to executive compensation below.

3.1 General Results with Transferable Utility

Assume agents can transfer utility within a match at a constant rate (quasilinear preferences, linear

Pareto frontier), and can set up transfers contingent on the realizations of (ω, σ). Notice that, at the

matching stage, all that agents care about is the expected value of those transfers.

The role of these transfers will be implicit in the analysis, since it is well known that under TU, the

optimal/equilibrium matching maximizes the total payoff of the economy, i.e., the sum of the match

value of all the pairs. Moreover, the sorting pattern that ensues depends on the properties of the match

11In principle, µ can be correspondence or a random variable. Since our interest is in positive and negative assortative
matching, as is most of the matching literature, we define it as a function. Also, notice that a matching is a mapping
between types instead of agents. But in our set up it is easy to show that in equilibrium different agents with the same
types behave in the same way. Hence there is no loss of generality in defining a matching between types.

12Given two cdf’s F and G, we say that F dominates G in FOSD if F (z) ≤ G(z) for all z or, equivalently, if
∫
u(z)dF (z) ≥∫

u(z)dG(z) for all increasing functions u. Similarly, F is an IR of G if
∫
zdF (z) =

∫
zdG(z) and

∫ t
F (z)dz ≥

∫ t
G(z)dz

for all t or, equivalently, if
∫
u(z)dF (z) ≤

∫
u(z)dG(z) for all increasing and concave functions u.
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value of each pair (x, y), denoted by V (x, y). In our set up with uncertainty this function is given by:

V (x, y) =

∫ ω

ω

∫ σ

σ
q(ω, σ)h(ω, σ|x, y)dωdσ. (1)

Thus, optimal matching maximizes
∫
V over all possible assignments of the agents of the two sides

of the market. And the core is a pair (u(x), v(y))x,y that satisfies individual rationality and pairwise

stability. The Pareto frontier of a pair (x, y) when y receives utility v is given by

Φ(x, y, v) =

∫ ω

ω

∫ σ

σ
q(ω, σ)h(ω, σ|x, y)dωdσ − v,

where the additive separability in v is a reflection of TU.

Our first result provides conditions for PAM and NAM in this setting.13

Proposition 1 (Sorting). Optimal sorting patterns are as follows:

1. PAM if H is spm (sbm) in (x, y) for each (ω, σ) and q is spm (sbm) in (ω, σ);

2. NAM if H is spm (sbm) in (x, y) for each (ω, σ) and q is sbm (spm) in (ω, σ);

3. PAM if
∫ ω
ω

∫ σ
σ H(s, t|x, y)dωdσ is spm (sbm) in (x, y),

∫ ω
ω H(s, σ|x, y)ds is independent of x for

all σ, and
∫ σ
σ H(ω, s|x, y)ds is independent of y for all ω, and if qωσ is spm (sbm) in (ω, σ);

4. NAM if
∫ ω
ω

∫ σ
σ H(s, t|x, y)dωdσ is spm (sbm) in (x, y),

∫ ω
ω H(s, σ|x, y)ds is independent of x for

all σ, and
∫ σ
σ H(ω, s|x, y)ds is independent of y for all ω, and if qωσ is sbm (spm) in (ω, σ).

The conditions on q are also necessary if it is to hold for all H.

All proofs are in the Appendix. It is easy to give a sketch of the proof here.14 Integrating (1) by

parts twice and then differentiating yields

Vxy =

∫ ω

ω

∫ σ

σ
qωσ(ω, σ)Kxy(ω, σ|x, y)dσdω.

If H is supermodular in (x, y) then so is V if (and only if) q is supermodular. Similarly for H submodular

in (x, y). Part (i) of the proposition follows.

Regarding part (ii), another integration by parts yields, after differentiation

Vxy =

∫ ω

ω

∫ σ

σ
qωωσσ(ω, σ)

(∫ ω

ω

∫ σ

σ
Kxy(s, t|x, y)dsdt

)
dσdω

13Recall that a twice continuously differentiable function z : [a, b]× [c, d]→ R is supermodular (spm) in (x, y) if zxy ≥ 0
and strictly so if zxy > 0; it is submodular (sbm) if zxy ≤ 0 and strictly sbm if zxy < 0.

14The proposition could be alternatively be proved in a much more general way using Theorem 3 Athey (1998). We
impose additional structure that affords a simpler self-contained proof.
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Thus, if
∫ ω
ω

∫ σ
σ H(ω, σ|x, y)dωdσ is supermodular in (x, y) then so is V if (and only if) qωσ is super-

modular. Similarly for H submodular in (x, y). Although not obvious, if realizations are conditionally

independent then two important special cases subsumed by Proposition 1 are the FOSD and the IR

cases. We now flesh out their sorting predictions.

Assume that H(ω, σ|x, y) = F (ω|x)G(σ|y) and consider first the case where F (ω|·) is decreasing in

x for each ω and G(σ|·) is decreasing in y for each σ. That is, the family {F (·|x)}x∈[x,x] is ordered

by FOSD, and similarly for {G(·|y)}y∈[y,y]. Then H(ω, σ|x, y) is supermodular in (x, y), and thus

Proposition 1 parts 1. and 2. hold. In particular, when F and G concentrate all of their mass at one

point for each x and y, respectively, the result reduces to the standard PAM and NAM in Becker (1973).

What are the properties of the distribution of ex-post types (ω, σ) under PAM or NAM with FOSD?

Let µ be monotone in x (PAM or NAM). The unconditional cdf of (ω, σ) in equilibrium is:

H(ω, σ) =

∫ x

x
F (ω|x)G(σ|µ(x))dΓ(x), (2)

and, with some abuse of the notation, the density and marginals are denoted by h(ω, σ), h(ω), and

h(σ), respectively. Easy algebra then reveals that the covariance between ω and σ under µ is

Cov[ω, σ] = =

∫ ω

ω

∫ σ

σ
ωσh(ω, σ)dωdσ −

∫ ω

ω
ωh(ω)dω

∫ σ

σ
σh(σ)dσ

=

∫ x

x
E[ω|x]E[σ|µ(x)]dΓ(x)−

∫ x

x
E[ω|x]dΓ(x)

∫ x

x
E[σ|µ(x)]dΓ(x)

= Cov [E[ω|x],E[σ|y]] , (3)

which is nonnegative under PAM since by FOSD the expectations inside the covariance operator are

increasing in x and y, respectively. Similarly, under NAM one expectation is increasing and the other

one is decreasing, and thus the covariance is negative. So PAM or NAM based on ex-ante types lead

to positive or negative dependence between the ex-post types, a stochastic sorting property.

A stronger testable implication under PAM obtains if we strenghten FOSD to log-spm F in (ω, x)

and G in (σ, y). For then H is log-spm in (ω, σ) (Karlin and Rinott (1980)) and thus H(ω|σ) and

H(σ|ω) are ordered by FOSD. That is, under PAM, the cdf of ex-post types σ’s associated with a given

realization of ω is increasing in FOSD sense, and thus this stochastic sorting property implies that

agents with better ex-post types are matched with stochastically better agents’ ex-post types.

Figures 1a and 1c provide an illustration of stochastic sorting under FOSD. If an econometrician

only has information about the ex post types of the matched pairs, then she will observe mismatches

scattered at both sides of the appropriate ‘diagonal.’

Assume now that instead of FOSD we have IR. That is,
∫ 1
0 F (ω|x)dω is constant in x (constant mean)

and
∫ t
0 F (ω|x)dω decreases in x, and thus the family {F (·|x)}x∈[0,1] is ordered by IR (if x′ > x then

F (·|x) is an IR of F (·|x′)). Similarly, impose analogous assumptions on the family {G(·|y)}y∈[0,1]. As a
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(a) PAM-FOSD: corr(ω, σ) > 0
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(b) PAM-MPS: corr(ω, σ) ≈ 0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ω

σ

(c) NAM-FOSD: corr(ω, σ) < 0
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(d) NAM-MPS: corr(ω, σ) ≈ 0

Figure 1: Distribution of matched ω, σ realizations under PAM/NAM and with FOSD and MPS and
ω, σ conditionally independent. Simulations with 1000 types. Under FOSD (both for PAM and NAM),
x, y uniform on [−.5, .5], and ω = x+ ε, σ = y + ε where εω, εσ are conditionally independent uniform
draws on [−.5, .5]. Under MPS, (both for PAM and NAM), x, y uniform on [0, 1], and ω = x ·ε, σ = y ·ε
where εω, εσ are conditionally independent uniform draws on [−1, 1].

result,
∫ 1
0 H(s, σ|x, y)ds = G(σ|y)

∫ 1
0 F (s|x)ds is constant in x,

∫ 1
0 H(ω, s|x, y)ds = F (ω|x)

∫ 1
0 G(σ|y)ds

is constant in y, and
∫ ω
0

∫ σ
0 H(s, t|x, y)dωdσ =

∫ ω
0 F (s|x)ds

∫ σ
0 G(t|y)dt is supermodular in (x, y). Hence,

Proposition 1, parts 3. and 4. apply, and qωσ determines PAM or NAM.

For some intuition, consider the special case q(ω, σ) = q(ω+σ). Then a negative fourth derivative is

the higher-order risk avoidance property called temperance: thus, qωσ submodular in (ω, σ) is equivalent

to qiv < 0, and in this case NAM, which minimizes the spread across pairs, is optimal.

Regarding the covariance of (ω, σ) under PAM or NAM, notice that E[ω|x] and E[σ|µ(x)] are con-
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stant in x and y. Hence, cov(ω, σ) = Cov [E[ω|x],E[σ|y]] = 0 under both PAM and NAM, so unlike

FOSD, monotone sorting is indistinguishable from random matching under IR based on this measure.

Nevertheless, there are still some stochastic sorting implications of this order, at least for some restricted

domains, with a stronger measure of assortative matching. Recall that a mean preserving spread (MPS)

is a special case of IR, characterized by the single crossing of any two cdf’s in the ordered family (IR

allows for multiple crossings). The joint unconditional density h(ω, σ) is

h(ω, σ) =

∫ x

x
f(ω|x)g(σ|µ(x))dΓ(x), (4)

with marginal h(σ) =
∫ 1
0 g(σ|µ(x))dΓ(x) and conditional h(ω|σ) = h(ω, σ)/h(σ). An interesting ques-

tion is whether anything can be said about h(ω|σ) as a function of σ when F is ordered by MPS as a

function of x and G is ordered by MPS as a function of y.

As a first step, let us analyze the binary case. Let x ∈ {x`, xh} and y ∈ {y`, yh}, identically

distributed with γ = P(x = xh) = P(y = yh) ∈ (0, 1); if x = xi, then ω ∈ {ωi, ωi}, with f(ωi|xi) = p,

i = `, h; similarly, if y = yi, then σ ∈ {σi, σi}, with g(σi|yi) = q, i = `, h. Finally, to ensure MPS, we

require E[ω|x`] = E[ω|xh], E[σ|y`] = E[σ|xh], ω` < ωh < ωh < ω` and σ` < σh < σh < σ`.

The goal is compute h(ω|σ) under PAM and NAM. Notice that, for each of the four values of σ,

this conditional distribution has support on {ω`, ωh, ωh, ω`} and thus we can summarize it by a vector

of four probabilities. Consider first PAM, so that µ(xi) = yi, i = `, h. Then

ω|σ` ∼ (1− p, 0, 0, p), ω|σh ∼ (0, 1− p, p, 0), ω|σh ∼ (0, 1− p, p, 0), ω|σ` ∼ (1− p, 0, 0, p).

For instance, conditional on σ`, under PAM we know that this agent’s partner can only generate signal

realizations ω` with probability 1 − p and ω` with probability p. Thus, under PAM, as σ increases

h(ω|σ) exhibits first a decrease in spread when σ increases and then an increase.

Consider now NAM, so that µ(xi) = yj , i 6= j = `, h. Then

ω|σ` ∼ (0, 1− p, p, 0), ω|σh ∼ (1− p, 0, 0, p), ω|σh ∼ (1− p, 0, 0, p), ω|σ` ∼ (0, 1− p, p, 0).

For instance, conditional on σ`, under NAM we know that this agent’s partner can only generate signal

realizations ωh with probability 1 − p and ωh with probability p. Thus, under NAM, as σ increases

h(ω|σ) exhibits first an increase in spread when σ increases and then a decrease.

Notice that although we have monotone matching based on ex-ante types (PAM or NAM), the

stochastic properties of the distribution of matched ex-post types are much more subtle. The Appendix

generalizes the analysis to a continuum of signal realizations and shows the following intuitive property,

which we conjecture holds for IR as well: under PAM, a very ‘low’ or very ‘high’ value of σ is more likely

to come from a ‘low’ type y, who is paired with a ‘low’ type x; and since low types have a larger spread
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in their distributions, the conditional distribution of ω given a very low or high value of σ should exhibit

more spread than those of ‘middle’ types. A similar intuition holds for NAM. Figures 1b and 1d provide

an illustration based on simulations. In both cases the correlation is zero and under PAM we observe a

pattern of ex post realizations akin to the number five on a dice, while under NAM we observe a pattern

of ex post realizations that appears like a cross. The absence of some form of stochastic monotonicity

in ex-post types does not allow the econometrician to reject assortative matching, as it could come from

a setting where distributions are ordered by spread.

It is worth noting that the FOSD and IR (or MPS) stochastic sorting predictions apply to both TU

and NTU settings, as they depend solely on the distributions of ex-post types and monotone matching.

We close with two comments about the model. The first one is about the possibility of reordering

ex ante types. Suppose for example that the order of traits is years of schooling, and that MBAs have

less years of schooling than PhDs, yet MBAs get higher ranked jobs as executives and get higher wages.

Suppose also that for any two graduates we can always pairwise rank the distribution F by FOSD.

Despite the pairwise ordering, FOSD fails for the entire population of graduates: PhDs draw from a

distribution of ex post types that is dominated by that of the MBAs, even though PhDs have more

years of schooling. We can nonetheless still reorder types according to the FOSD in which MBAs are

ranked above PhDs. In that case, Proposition 1 still applies. The key observation here is that we can

obtain this sorting outcome without changing the match output function q as long as it is a function

solely of the ex post types. This is not the case in Becker’s deterministic model. If the PhD is ranked

higher in years of schooling but obtains lower ranked jobs and gets lower wages, the technology is at

least locally submodular. We can of course also reorder MBAs and PhDs, but this will also require that

we adjust the technology, which must now become supermodular.

The second comment highlights the importance of both technology and distributions. Unlike the

standard Becker model where PAM obtains under supermodularity, q spm is not sufficient for PAM. As

Proposition 1 establishes, we also need conditions on the distributions. For an easy example, consider

a matching market with q(ω, σ) = ωσ2 and with conditionally independent signals where F is ordered

by FOSD (Fx < 0), and G is normally distributed with mean µ(y) and variance s2(y), where µ′(y) > 0

and s′(y) < 0. Then V (x, y) = E[ω|x]E[σ2|y] = E[ω|x]
(
s2(y) + µ2(y)

)
and thus

Vxy(x, y) = Ex[ω|x]

(
ds2

dy
+
dµ

dy
2µ

)
.

Hence, Vxy < 0 and there is NAM if ds2/dy < −(dµ/dy)2µ, despite q being supermodular in (ω, σ).

3.2 Risk Sharing and Nontransferable Utility

We now turn to the more challenging setting with NTU (see Legros and Newman (2007)). Although

agents can transfer utility among them, they cannot do so at a constant rate. Since matching is based

on ex-ante types, agents face uncertainty at the matching stage. That uncertainty, coupled with the
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standard assumption in economic applications that agents are risk averse, invariably leads to a nontrivial

risk sharing problem. Although there could be other decisions that a pair takes, we will assume that

they are summarized in the output that is to be shared based on the ex-post characteristics. As a

result, we will focus on the properties of efficient risk sharing between partners (who can commit to

ex-post transfers), and derive sufficient conditions for PAM or NAM.

Agents with ex-ante characteristics x and y match and commit to ex-post efficient sharing of the

joint output q, which depends upon the ex-post characteristics of the pair (ω, σ). That is, q(ω, σ) is

divided such that agent x consumes cx(ω, σ) and y consumes cy(ω, σ), with cx(ω, σ)+cy(ω, σ) ≤ q(ω, σ).

An important special case is when ω and σ are the agents’ incomes, so that q(ω, σ) = ω + σ.

Consider a pair (x, y), with ui being the utility function of i = x, y, assumed strictly increasing and

concave in consumption ci. The risk sharing problem that a pair (x, y) solves is:

Φ(x, y, v) = max
cx,cy

∫ ω

ω

∫ σ

σ
ux(cx(ω, σ))h(ω, σ|x, y)dωdσ

s.t. cx(ω, σ) + cy(ω, σ) ≤ q(ω, σ) ∀ (ω, σ)∫ ω

ω

∫ σ

σ
uy(cy(ω, σ))h(ω, σ|x, y)dωdσ ≥ v,

where v is the reservation utility of agent y (which is pinned down in equilibrium), and Φ(x, y, v) is the

maximum expected utility from the match for an agent with type x who matches with an agent with

type y whose reservation utility is v.

It is clear that both constraints will bind at the optimum, so the problem becomes

Φ(x, y, v) = max
c

∫ ω

ω

∫ σ

σ
ux(q(ω, σ)− c(ω, σ))h(ω, σ|x, y)dωdσ

s.t.

∫ ω

ω

∫ σ

σ
uy(c(ω, σ))h(ω, σ|x, y)dωdσ = v.

Let λ be the Lagrange multiplier associated with the constraint. Then maximizing pointwise we obtain:

u′x(q(ω, σ)− c(ω, σ)) = λu′y(c(ω, σ)), ∀ (ω, σ),

which along with the constraint determine the function c and the value of λ. The standard procedure

in risk sharing problems is to solve for c(ω, σ, λ) from the first-order condition, insert the solution into

the constraint, and find for each v the unique value of λ(x, y, v) that satisfies it. Then the optimal

consumption function is c∗(ω, σ, , x, y, v), and hence we obtain

Φ(x, y, v) =

∫ ω

ω

∫ σ

σ
ux(q(ω, σ)− c∗(ω, σ, x, y, v))h(ω, σ|x, y)dωdσ. (5)

Notice that Φ(x, y, ·) traces the Pareto frontier of the problem as we vary v.
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Legros and Newman (2007) show that the properties of Φ determine when PAM or NAM is optimal,

and derived sufficient (and necessary) conditions for monotone sorting. We will use a differential version

of their condition (see Chade, Eeckhout, and Smith (2016) for details), which asserts that PAM is

optimal if Φxy ≥ (Φy/Φv)Φvx for all (feasible) (x, y, v), and NAM is optimal if the inequality is reversed.

Not only type-complementarity is important for sorting, but also type-utility complementarity, which

determines how costly it is to transfer utility to a partner. In particular, if Φ is additively separable in

v, then Φvx = 0 and we obtain the usual Φxy ≥ 0 for PAM and Φxy ≤ 0 for NAM.

At this level of generality, it is extremely difficult to derive results since Φ depends in a complicated

fashion on its arguments.15 One case that is immediate is when one party, say x, is risk neutral. In

this case, it is well-known that x bears all the risk and gives y a constant consumption determined by

uy(c
∗) = v, so c∗ = u−1y (v). Hence, Φ(x, y, v) =

∫ ∫
(q(ω, σ)h(ω, σ|x, y)dωdσ − u−1y (v) = V (x, y) − v′,

and we are essentially back in the TU world. Thus, Proposition 1 applies.

Another interesting case for which we can shed light on sorting patterns is the important HARA (hy-

perbolic absolute risk aversion) class of utility functions, given by u(c) = ((1−α)/α)(((ac/(1− α)) + b)α−
1), with a > 0 and (ac/(1−α))+b > 0. It subsumes all the utility functions commonly used in economic

applications: linear utility (as α goes to one), log-utility (as α goes to zero), quadratic utility (when

α = 2), constant relative risk aversion utility or CRRA (when b = 0 and a = 1 − α), and constant

absolute risk aversion utility or CARA (when b = 1 and α goes to −∞). We show in the Appendix

that in this case Φ is given by

Φ(x, y, v) =
1− α
α

((
V

1
α (x, y)−

(
vα

1− α
+ 1

) 1
α

)α
− 1

)
, (6)

where

V (x, y) =

∫ ω

ω

∫ σ

σ

(
aq(ω, σ)

1− α
+ 2b

)α
h(ω, σ|x, y)dωdσ. (7)

One can verify that the limit of Φ as α goes to one is V (x, y)− v, that is, the TU case. Hence, (6) is a

generalization of TU. We can now state a general sorting result in this case:

Proposition 2. Let agents have a common HARA utility function with α 6= 0. Then PAM is optimal

if ((1− α)/α)(V Vxy + ((1− α)/α))VxVy) ≥ 0. NAM is optimal if the inequality is reversed.

To explain this result, assume first that (1−α)/α > 0. Then by a strictly increasing transformation

of Φ, we can obtain an equivalent (for sorting purposes) representation of (6) as Φ̂(x, y, v) = V
1
α (x, y)−

v
1
α = V̂ (x, y)− v̂. In the language of Legros and Newman (2007) (see their Proposition 2), the problem

is TU representable, and PAM or NAM emerges depending on whether V̂ is spm or sbm, which reduces

to the sign of ((1−α)/α)(V Vxy +((1−α)/α))VxVy). Similar remarks apply when (1−α)/α is negative.

Thus, sorting requires more stringent conditions under risk aversion. Regarding V , notice that unlike

15To see this, note that c(ω, σ, λ) as well as λ(x, y, v) (and hence c∗) are implicitly defined, and so are their cross-partials,
which depend on ui, i = x, y, in an involved way.
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the TU case where q is in the integrand, equation (7) contains what can be interpreted as a ‘modified’

output q̂ = ((aq/(1− α)) + 2b)α, which has the same form as the utility function of each agent except

for the number two in front of b.16 Hence, V =
∫ ∫

q̂h, and we can adapt some of the properties on q

used in Proposition 1 to this case using q̂.

Obviously, the usefulness of Proposition 2 hinges upon the ease with which one can find primitives

that satisfy the conditions for monotone sorting. Although a sweeping result like Proposition 1 is not

available, we can derive several interesting cases where we can exactly pin down the sorting pattern for

utility functions commonly used in applications.

CRRA. Consider the case with α ∈ (0, 1), b > 0, conditional independent signals, and FOSD. Then

V > 0, VxVy > 0, and so is (1 − α)/α. Thus, PAM is optimal if Vxy > 0, and this holds if q̂ is spm

in (ω, σ). One can verify that a sufficient condition for q̂ = qα spm is that q be root-spm in (ω, σ),

i.e. the α-root of q is supermodular: ∂2qα/∂ω∂σ > 0. So PAM obtains if α ∈ (0, 1), b > 0, signals are

conditionally independent and ordered by FOSD, and q is root-spm.17

Log Utility. Regarding the log utility case α = 0. We show in the Appendix that in this case

log
(
eV (x,y) − ev

)
, where

∫ ω
ω

∫ σ
σ log(aq(ω, σ)+2b)h(ω, σ|x, y)dωdσ, and that PAM obtains if Vxy+VxVy ≥

0 and NAM if this expression is nonpositive. Assume conditionally independent signals ordered by

FOSD, and b > 0.5 to ensure the integrand of V is nonnegative. In this case we have that both Vx and

Vy are positive, so PAM ensues if Vxy > 0. From Proposition 1 with q̂ = log(aq + 2b), it follows that

all we need is q̂ spm in (ω, σ), which holds if q is log-spm in (ω, σ). Hence, PAM is optimal if b > 0.5,

signals are conditionally independent and ordered by FOSD, and q is log-spm in (ω, σ).

We close with a couple of interesting special cases involving q(ω, σ) = ω + σ, which would emerge

if an agent’s ex-post type is income and pairs pool their incomes.

CARA. Assume agents have CARA utility u(c) = −eρc and ex-post types are conditionally inde-

pendent. Then there is no sorting prediction in this case, as Φxy = (Φx/Φv)Φxv. To see this, notice

that as α goes to minus infinity, the condition for monotone sorting depends on VxyV − VxVy (as the

limit of (1 − α)/α is −1). Also, in the limit we obtain V (x, y) =
∫ ∫

e−0.5ρ(ω+σ)f(ω|x)g(σ|y)dωdσ =

E[e−0.5ρω|x]E[e−0.5ρσ|y]. Thus, V is log-modular and hence there is no monotone sorting prediction.

Location Family. With q(ω, σ) = ω + σ, assume instead that utility is CRRA with α ∈ (0, 1),

which by an affine transformation can be written as u(c) = cα/α. Suppose that ex-post types are

conditionally independent and their distributions are location families F ((ω− x)/s) and G((σ− y)/ν),

16This can be formally interpreted as the utility function the pair would use to rank alternative q’s if there were many
available to choose from. It is well-known that HARA aggregates partners’ preferences in such a way (see Wilson (1968)
and Amershi and Stoeckenius (1983)).

17Consider now the same assumptions but with α > 1, so that −1 < (1 − α)/α < 0. Then it suffices for NAM that
V Vxy − VxVy > 0, or that V be log-spm in (x, y) (recall that it is multiplied by (1 − α)/α, which is negative). Since
log-supermodularity is preserved by integration (Karlin and Rinott (1980)), NAM obtains in this case if q̂ is log-spm in
(ω, σ) (which follows if q is sufficiently log-spm in (ω, σ)) and f and g are log-spm in (ω, x) and (σ, y), respectively.
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respectively, where s and ν are scale parameters that we can wlog normalize to one since they are not

dependent on types. Then the optimal sorting pattern is NAM. To show it, notice that V in this case is

V (x, y) =
1

α

∫ ∫
f (ω − x) g (σ − y) (ω + σ)αdωdσ =

1

α
E [(ω + σ)α] .

Integrating by parts and differentiating V with respect to x yields

Vx(x, y) =

∫ ∫
f (ω − x) g (σ − y) (ω + σ)α−1dωdσ = E

[
(ω + σ)α−1

]
,

and proceeding analogously one can show that Vy = Vx.

Another integration by parts and differentiation with respect to y gives

Vxy(x, y) = −(1− α)

∫ ∫
f (ω − x) g (σ − y) (ω + σ)α−2dωdσ = E

[
(ω + σ)α−2

]
.

The condition for negative sorting is VxyV + ((1− α)/α)VxVy < 0, which reduces to

(E[(ω + σ)α−1])2 − E[(ω + σ)α−2]E[(ω + σ)α] < 0.

Add and subtract E[(ω + σ)α−2(ω + σ)α] to the right-hand side of this expression to obtain

(E[(ω + σ)α−1])2 − E[(ω + σ)α−2]E[(ω + σ)α] = −Var[(ω + σ)α−1] + Cov[(ω + σ)α−2(ω + σ)α],

which is clearly negative since α ∈ (0, 1) implies that Cov[(ω + σ)α−2(ω + σ)α] < 0. For an intuition

of this result, notice that in a location family, the riskiness is kept constant while the traits x and y

change. As a result, for a type x the only difference between matching with a partners with a higher

trait y is that she has a higher mean realization. With the riskiness constant, the insurance motive

with CRRA comes from the income effect. Partners with higher traits most efficiently insure their high

realization by matching with low traits match who have low realizations, i.e., NAM. Of course, prices

are such that the share of the higher trait partners is proportionately higher.

As a final remark, the proof of Proposition 2 derives in closed form both c(ω, σ) and q(ω, σ)−c(ω, σ).

That is, unlike the TU case where only the expected value of ex-post transfers is pinned down, under

NTU we obtain a precise derivation of the ex-post transfers. This can be useful in empirical work if

these transfers represent, say, wages and profits, as in one of our applications below. Needless to say,

the additional information comes at the cost of a more involved analysis than in the case of TU.

3.3 Matching Principals and Agents

Another important class of problems that usually exhibit NTU is the matching of principals and agents

under moral hazard. In this section we develop a model that is a variation of Holmström and Milgrom
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(1987) embedded in a matching setting. Besides being of independent interest, the model has enough

structure to be an NTU model that is TU representable (which drastically simplifies the derivation of

sorting conditions) and empirically implementable (the next section illustrates its usefulness).

There are two populations, principals and agents, with heterogeneous characteristics. If a principal

with ex-ante type y matches with an agent with ex-ante type x, then the following sequence of events

unfold: The principal offers the agent a linear incentive contract; the agent accepts or rejects it; if

rejected, the agent takes his outside option which is determined in the matching equilibrium; if accepted,

then the agent ex-post type ω is realized and observed by both parties; the agent chooses a level of

effort that is unobservable to the principal (moral hazard); a stochastic output, which depends on the

(unobservable) ex-post type of the principal is realized; and payments are determined based on the

output realization and the contract.

Principals are risk neutral, and agents have CARA utility function −e−r(w−0.5e2), where r is the

coefficient of risk aversion, w is wage, and e ≥ 0 denotes effort level, which has a disutility cost that

is quadratic in e. Output is stochastic and depends on the agent’s effort level, his ex-post type, the

principal’s ex-ante type, and a shock that represents the principal’s ex-post type:

q(ω, σ) = ω(e+ t(y) + σ) (8)

where σ is normally distributed N (0, s2(y)) and where the variance s2(y) depends on the principal’s

type y as does the “average” principal’s type t(y). In turn, ω is distributed F (ω|x), with ω ≥ 0.

An important difference with Holmström and Milgrom (1987) is that matching affects the perfor-

mance of the pair through ω (whose distribution depends on x) and y. This introduces a reason for

sorting based on ex ante types. Higher ex post agent types ω produce more output per unit of effort.

The reservation wage of an agent in Holmström and Milgrom (1987) is set exogenously at some level a.

Here, the reservation wage a(x) depends on x with corresponding reservation utility z(x) = −e−ra(x).
This outside option will be determined endogenously at the matching stage and effectively corresponds

to the expected wage determined in the matching equilibirum.

Appealing to Holmström and Milgrom (1987), we restrict attention to linear contracts in output,

where the slope and intercept can be contingent on the agent’s ex-post type: w(q, ω) = β(ω) + α(ω)q.

The principal’s contracting problem is as follows (for simplicity, we supress the dependence on x and y

from the contracting variables, since they are held fixed in the analysis of the optimal contract):

max
β,α,e

∫ ω

ω
(E[q(ω, σ, y)|e]− (β(ω) + α(ω)E[q(ω, σ, y)|e])) dF (ω|x) (9)

s.t.

∫ ω

ω

(
E
[
−e−r(β(ω)+α(ω)q(ω,σ,y)−0.5e(ω)2)

])
dF (ω|x) ≥ z(x) (10)

e(ω) ∈ argmaxêE
[
−e−r(β(ω)+α(ω)q(ω,σ,y)−0.5ê2)

]
∀ω (11)
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where (10) is the participation constraint, (11) is the incentive constraint, and the expectation is taken

with respect to the distribution of σ, which is normal with zero mean and variance s2(y).

Notice that the participation constraint only needs to hold in expectation, since at the time of

contracting ω is not known. In turn, the incentive constraint needs to hold for each realization of ω, for

this is known at the time the agent chooses effort. Despite the apparent complication, we show in the

Appendix that the solution is as in Holmström and Milgrom (1987) since, after some algebra, it can be

solved separately for each value of ω. The resulting optimal contract is given by:

α(ω) =
1

1 + rs2(y)
, β(ω) = a(x)− ωt

1 + rs2(y)
+

ω2

2 (1 + rs2(y))2
(
rs2(y)− 1

)
, e(ω) =

ω

1 + rs2(y)
,

and, consequently, agent’s wage, principal’s profit, and output, for each (ω, σ) are given by

w(ω, σ, x, y) = a(x) +
ω2

2 (1 + rs(y)2)
+

ωσ

1 + rs(y)2
(12)

π(ω, σ, x, y) = ωt(y)− a(x) +
ω2

2 (1 + rs2(y))
+

rs2(y)ωσ

1 + rs2(y)
(13)

q(ω, σ, x, y) =
ω2

1 + rs2(y)
+ ω(t(y) + σ). (14)

Inserting these expressions into (9) yields the maximum expected profit a principal with ex-ante type

y can achieved when matched to an agent with type x who receives a level of utility z:

Π(y, x, z) = V (x, y)− 1

r
log(−z)

=

∫ ω

ω

∫ ∞
−∞

q(ω, σ, y)dF (ω|x)dG(σ|y)− 1

r
log(−z)

=

∫ ω

ω

(
ω2

1 + rs(y)2
+ ωt(y)

)
dF (ω|x)− 1

r
log(−z)

=

∫ ω

ω
q(ω, y)dF (ω|x)− 1

r
log(−z),

where q(ω, y) =
∫∞
−∞ q(ω, σ, y)dG(σ|y) = ω2/(1 + rs(y)2) + ωt(y) is the match output after integrating

out σ. Notice that the model is TU representable, and thus sorting depends on the sign of Πxy = Vxy.

And although we cannot apply Proposition 1 directly (as q depends on y), a simple modification of the

analysis there delivers sorting conditions for the moral hazard case:

Proposition 3 (Moral Hazard). Optimal sorting patterns are as follows:

1. If F is ordered by FOSD, then PAM (NAM) obtains if q is spm (sbm) in (ω, y).

2. If F is ordered by IR, then PAM (NAM) obtains if qωy is decreasing (increasing) in ω.

Consider part 1. and the functional form of q. The first term ω2/(1 + rs(y)2) comes from the
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moral hazard problem, while the second term ωt(y) comes from technology, the standard Beckerian

component. If t is increasing and s2 decreasing in y, then both are spm and PAM obtains. But

if s2 is instead increasing in y, then moral hazard is a force towards NAM while technology pushes

towards PAM. The CEO application below exhibits this property. Regarding part 2., it differs from the

corresponding part in Proposition 1 simply because q is linear in σ and has mean zero, which implies

that G disappears from V , and also because q depends on y, an effect not present in the set up of

Proposition 1. Interestingly, whether PAM or NAM obtains in this case is driven by the monotonicity

of s2: PAM obtains if s2 is increasing and NAM if it is decreasing in y.

Notice that the outside option a(x) or its utility value z(x) does not play any role in the determi-

nation of optimal/equilbrium sorting patterns. This is obviously due to the TU nature of the problem,

which owes to CARA, normality, and the linearity of the contract. But if we are interested not just on

the matching but also on the ex-ante transfers that constitute a competitive equilibrium function, then

we must determine a(x) for each x endogenously. This is done at the matching stage when principals

and agents match. The certainty equivalent a(x) is equal to the ex ante wage an agent with type x

receives in equilibrium, which reflects the next best alternative of this agent. As before, the matching

stage is exactly as in the Becker model with deterministic types, since it is based on x and y. Thus, the

ex ante wage a(x) solves the first-order condition of the maximization maxx V (x, y) − a(x), evaluated

along the equilibrium matching µ(x), that is, a′(x) = Vx(x, µ(x)). Therefore

a(x) = a(x) +

∫ x

x
Vx(z, µ(z))dz, , (15)

where a(x) ∈ [0, V (x, µ(x))] is a constant of integration. The matching µ along with utilities z(x) =

−e−ra(x) for all x and Π(y, µ−1(y), z(µ−1(y))) for all y fully describe the competitive equilibrium.

4 Applications

In this section, we illustrate the usefulness of our stochastic sorting framework with two economic appli-

cations. The first analyzes the role of mismatch between executives and firms. The second sheds light on

the importance of assortative matching for household earnings inequality: we provide a decomposition

of household inequality into marital sorting and stochastic sorting.

4.1 Mismatched Executives

First, we apply the model of the previous section to the matching of CEOs to firms: heterogeneous

firms and CEOs match and their relationship and compensation is regulated by an incentive contract.

Using the optimal contract and the conditions for PAM, we estimate the model using US data on firms

and CEOs, and we shed light on several stylized facts.18

18 See also Edmans and Gabaix (2011) for an analysis of the role of risk in the market for CEO’s.
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US Data on Executive Compensation and Firm Profits. We construct data on CEO compen-

sation by imputing the CEOs job performance in the firm’s stock market value.19 To be consistent with

our model, we exclusively consider new hires and we do not envisage rematching or separation. We

further assume that output, wages and profits are determined as in our principal-agent model.

The data is from the Execucomp (Compustat) database for US publicly traded firms. We construct

the sample by selecting all newly hired CEOs during 2010. We then construct wages and profits based

on the period 2011-2012. This gives us a sample of n = 80 observations.20 The two-year interval

(2011-2012) we have chosen reflects the tradeoff between choosing a longer interval, which would give

us a better estimate of the ex post outcome of the match, and a shorter interval, which ensures that

fewer CEO-firm matches are separated endogenously.21

To construct the firm type y, we follow Gabaix and Landier (2008) and Terviö (2008) and rank

firms by 2011 market capitalization (as of December 31) and define the type y as the log of market

capitalization. Under the assumption of frictionless matching and positive sorting, we rank workers

by the firm they are matched with: x = y. Of course ex post, once we have estimated the model, we

need to verify that indeed the expected value of a match V (x, y) is supermodular, thus justifying our

identifying assumption that there is PAM.

For wages we use total compensation – denoted by TDC1 and including salary, bonus, restricted

stocks, stock options, and long-term incentive payouts – and for job performance we use firm profits, as

measured by the change in the stock market valuation (from Compustat) over the course of 2011 and

2012. Over this period of two years, our wage variable w is then TDC1(2011)+TDC1(2012), and our

profit variable π is derived from the change in the firm’s market value (MkVal) equal to MkVal(2012)-

MkVal(2010), both as measured on December 31 of the year. Observe that wages are always positive

in the sample, and that profits take on both negative and positive values. Figure 2a below depicts the

scatter plot of the wage data together with the model estimate of the average wage by CEO type x.

Total CEO compensation over the two-year period varies between less than a million up to 45 million.

While compensation on average is increasing in ex ante type x, the variation is noteworthy.

Figure 2b reports the same for the return data (profits over market capitalization).22 The average

19It is well known that data on payoffs to both sides of the market are hard to come by. Even in matched employer-
employee data obtained from exhaustive administrative sources there is usually no good information on the productivity
at the job level. This has lead to a recent literature identifying sorting from wage data alone (see Eeckhout and Kircher
(2011) and Lamadon, Lise, Meghir, and Robin (2013).

20In the entire Execucomp sample there are 1,931 firm-CEO pairs in 2010, of which 106 were newly formed during that
year. Within this sample, there are missing observations for at least one of the variables we use and there are 4 separations
before the end of 2012, which gives us a sample of 80.

21Most CEO tenures last well beyond two years. In our sample, there are 4 separations within that two year window.
Our model does not incorporate endogenous separations, either due to a bad realization of the CEO performance that
leads to his firing, or due to a good one that leads to poaching by a more productive competitor. Since attrition would
alter the continuation value and therefore the value of match formation, it could induce a bias in the estimates, especially
in the variance of the estimated ex post heterogeneity (which would be lower in the presence of endogenous separation
since extreme realizations are likely to lead to separation). But it is not clear whether and if so in which direction there
would be a bias in the mean of the ex post CEO type since both too bad and too good CEOs would separate.

22We choose to represent the firm profits in terms of returns rather than logs, in order to make profits of large and small
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stock market return over the two year period from the end of 2010 until the end of 2012 appears to

be somewhat higher for the low capitalization firms in this sample, and also the variance of returns

appears to be decreasing in firm capitalization.

Estimation Procedure. The model predicts a relation between observable outcomes (wages w,

profits π and matched pairs x = y) and unobservable primitives (distributions and technology). The

distribution function F (ω|x) is assumed lognormal with parameters k(x) and m(x), and G(σ|y) is

normal with mean zero and variance s2(y). The model also generates an ex post match surplus q(ω, σ) =

(ω2/(1 + rs2(y))) + ω(t(y) + σ) as well as the split into wages and profits. Notice that once we know

k(x),m(x), t(y), s(y), we know both the distributions as well as the ex post production function.

Our estimation procedure starts by positing PAM, so that x = y. Then we can express the primitives

in terms of x: k(x),m(x), t(x), s(x). Once we have obtained the estimates for these primitives, we need

to verify whether the obtained technology is indeed supermodular so as to validate the PAM assumption.

The challenge is that the primitives are functions of x, and for each x we have one observation. We

therefore assume polynomial forms: for ξ ∈ {k,m, t, s}, let ξ(x) = ξ0 + ξ1x + ξ2x
2. Then we estimate

these 12 parameters using maximum likelihood where we invert (12) and (13) to obtain expressions for

ω and σ. The likelihood function and its derivation is reported in the Appendix.
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Figure 2: Data and Estimates.

Results. Our objective is to back out the distributions F (ω|x) and G(σ|y) as well as the technology

q(ω, σ). The model is fully specified by the 12 parameters. We present a series of plots to interpret

the estimated model.23 In Figure 2 we plot the predicted wages estimated from the model, as well as

the returns as a function of type x or y, together with the data. The model captures the increase in

firms comparable on the same scale in the graphs. We cannot take logs because some profit realizations are negative.
23The parameter estimates are reported in Table 2 in the Appendix.
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average wages and the decrease in returns as a function of the type, however the wage schedule is flatter

and the return schedule is steeper than the data. We then plot the estimated values of k,m, t, s as a
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Figure 3: Estimated Parameters k,m.

function of x or y: in Figure 3 those parameters that pertain to the distribution of ω – k(x) and m(x)

– and in Figure 4 those that pertain to the distribution of σ – t(y) and s(y). In both figures, in panel

(a) we plot the predicted mean as well as the predicted standard deviation, and in panel (b) we plot

for each type the predicted value of the unobserved characteristic (ω and σ respectively) together with

the mean and confidence bands of the distribution. A nice feature of our model is that we can not only

back out the parametric distributions of unobserved types but also the actual unobserved types ω and

σ given the parametric estimates.

What we learn from these estimates is that k is slightly increasing, but only very slightly so, and

m is basically flat. Of course, given that ω is log-normally distributed, the expected value of ω is equal

ek+0.5m2
which is increasing in x (this can be seen from Figure 3b).

The following insights emerge from the results. First, the variation across workers of different

types x is minor. This salient feature implies that the contribution of CEO marginal product is not

driven by the CEO type but by the firm type. This is in line with the findings by Terviö (2008) and

Gabaix and Landier (2008): wages for executives vary a lot but it is mainly driven by the variation in

the characteristics of the firms they work. The CEOs themselves are only marginally different, but a

CEO whose decisions affect the sales of a firm that is 100 times larger will as a result have an equally

proportional economic impact compared to a CEO in the small firm. As a result, these marginal

differences between CEOs translate in huge differences in compensation.

Second, there is uncertainty about CEO types – for a given type x – that is orders of magnitude

larger than the increase in the predicted type. The “noise” around k(x) in Figure 3b is substantially

bigger than the increase of k in x. This is the main insight of this application. Not only is the wage
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increase of CEOs driven nearly exclusively by the firm characteristics, but there is also so much variation

in the ex post CEO type that we can barely predict who will be a good CEO ex ante. Moreover and

as a result, there is significant mismatch ex post. We will return to the issue of mismatch below. The
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Figure 4: Estimated Parameters t, s.

estimates of the firm characteristics are as expected. Higher ranked firms generate more match surplus

– t(y) is increasing – but there is a lot of noise – the predicted standard deviation s(y) is large, and

also increasing in y – (see Figure 4a). The estimated values of σ confirm the extent of the variance

as evident in the large confidence bands in Figure 4b. Observe also that there is high variance across

all firm types y. The high variance in the distribution of σ has important implications for the optimal

contract in our model. Variance in output implies that the CEO contribution to output is subject more

to luck than to her effort. Moreover, it becomes more costly for the firm to induce effort due to CEOs

risk aversion. As a result, the optimal contract will entail less powered incentives.

We now turn to the estimated match surplus. The ex post output is equal to the sum of wages and

profits. With the estimated parameters, we can now also construct the ex ante match surplus from

equation (27) as well as the cross-partial Vxy from equation (28), both in the Appendix. While we

only have observations along the equilibrium allocation where x = y, the estimated model parameters

allow us to reconstruct the match expected match surplus V (x, y) for the entire domain of (x, y) ∈ R2
+.

Figure 5 plots both the estimated V (x, y) and Vxy in three dimensions. Figure 5a reveals that expected

output is increasing both in CEO type x and in firm type y. Moreover, from the convexity of the

hyperplane it appears that there are complementarities and V (x, y) is supermodular. To verify this, we

evaluate the cross-partial derivative (28) at the estimated parameters. The plot of the cross-partial in

Figure 5b confirms that over the entire domain of x and y, V (x, y) is supermodular. This is crucial for

our estimation strategy, since we estimated the model assuming PAM, which allowed us to start from

the premise that x = y. This identifying assumption is justified so long as the estimated technology is
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(a) The estimated expected match surplus V (x, y) (b) Complementarity of the match surplus Vxy(x, y)

Figure 5: Estimated Match Surplus.

indeed supermodular, as we have just shown is the case.

The Cost of Mismatch. Our main findings is that there is substantial ex post mismatch. This was

apparent already from the difference between observed and predicted wages. But we can also calculate

the monetary cost of mismatch. For that purpose, we will perform a simple experiment in which we

reallocate the mismatched CEOs to new firms based on their ex post realized type. For example, if a

CEO was ranked at position ninth initially, but her ex post realization of ω is such that she is ranked

fifth, then in the experiment we will allocate her to the firm with rank five. If at rank nine her initial

type was x then at rank five her type will be denoted by x̃. Given supermodularity, this will lead to an

increase in output as with her ex post type she is better matched to the firm. Observe that we treat

the realization of the CEO type ω as permanent, as if it is the same in all firms.24 In Figure 6a we plot

the relation between the ex ante type x and the type x̃ assigned based on the ex post realization of

ω. We will use the ex post realization x̃ to calculate the cost of mismatch. We do this by calculating

the difference between the output generated under the new, virtual matching where x̃ = y compared

to the ex ante matching where x = y. Moreover, we take into account that in their virtual matches

CEOs would optimally change the effort they provide since the firm’s type is different. As a result, we

can decompose the output gain into a component that is due to the mismatch of types, and one that is

due to the adjustment of effort. The exact decomposition is in the Appendix.

Figure 6b plots the output gain for each type x. The gain is negative for some CEOs because they

were “overmatched” and hence will produce less output than before as x̃ < x. Over all CEOs, however,

the average of the output changes is positive. This follows from the supermodular ex post output.

Figure 6c plots the decomposition of the output gain due to pure mismatch and due to effort. These

24We cannot know from our analysis whether the type is permanent or match specific, and it is likely that both
components are present. The results of this exercise should be taken as indicative of the cost of mismatch.
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Figure 6: Mismatch.

changes can be positive or negative. Interestingly, the output effect of effort tends to have the opposite

sign of the output effect of mismatch. What is more relevant economically is that the output effect of

effort is small compared to that of mismatch. This is evident in Figure 6d where we show the percentage

contribution of each output gain. Because of the negatives, we represent this percentage change as a

fraction of the absolute value of the change in each of the two components (effort and mismatch).

This counterfactual exercise teaches us that the output loss is mainly driven by mismatch. The

contribution from the adjustment of effort is a small fraction of the total change in output (in absolute

value). For the low productivity firms, the contribution to output (whether positive or negative) of

mismatch is over 80%. This indicates that there is little loss due to incentives. In part this can be

attributed to the amount of noise in σ, which makes the incentive component of compensation small.

For higher types x the share of output change due to mismatch gets smaller. Incentives seem to matter
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more for the highest CEO types. Finally, in Figure 6b that there seems to be regression to the mean

in the sense that low types x tend to post net gains whereas higher CEO types tend to post losses.

This application sheds new light on the role of mismatch and CEO stochastic sorting. Like Terviö

(2008) and Gabaix and Landier (2008) we find that the contribution to wage inequality of CEOs is

mainly driven by the heterogeneity of firms. What we add to this debate is that CEO productivity is

also highly stochastic, and that the magnitude of this randomness is larger than the ex ante variation

in CEO type. As a result, ex post many firm-CEO pairs are highly mismatched. Output loss is mainly

due to direct mismatch and not to suboptimal effort. Our results indicate that firms should be more

concerned about the selection of their CEOs than about providing them with incentives to work hard.

4.2 Household Income Inequality: Marital vs. Stochastic Sorting?

The second application uses our framework to shed light on the determinants of household inequality

and its dramatic increase in recent decades. The variance of household income has increased eightfold

between 1960 and 2014 (see Table 1), while average household income has merely doubled. Many

different components contribute to this increase. Our objective here is to decompose the increase in the

variance of household income into the components due to marital sorting based on ex ante education –

the education of married partners is more similar – versus those due to stochastic sorting based on ex

post earnings – the distribution of individual income has become more unequal and correlated. Marital

sorting is often cited as a major cause for the increased earnings inequality of married households.

We will further decompose the increase in household inequality due to stochastic sorting into:

increased earnings inequality of males and females; increased correlation between male and female

earnings. Similarly, we decompose marital sorting into: increased educational attainment of males and

females; increased female educational attainment relative to males; higher assortativeness (or lower

ex ante mismatch). This decomposition is a simple accounting exercise that can be interpreted using

our stochastic sorting framework.25 The decomposition is inspired by the work of Greenwood, Guner,

Kocharkov, and Santos (2014) and Lam (1997).26

For the years between 1960 and 2014, we use data from the US Decennial Census (1970, 1980, 1990,

2000) and the American Community Service (ACS) (2005-2014) to obtain information on married

heterosexual couples between the ages of 25 and 55. For each married couple we observe each partner’s

education and annual earnings. In line with the notation of the model, education is denoted x for the

male and y for female and distributed according to Γ(x) and Ψ(y). We group the level of education into

four categories: less than high school (1=HS-), high school (2=HS), some college (3=C-) and college or

25We have no data on the ex post division of the surplus within the marriage, so we cannot estimate the match surplus
technology q(ω, σ) using, for example, a model of risk sharing. Hence, we restrict our attention to the analysis of the
decomposition of household inequality.

26Eika, Mogstad, and Zafar (2014) and Pilossoph (2016) also find that most of the inequality is due to increased earnings
inequality and not due to marital sorting. We discovered their work posterior to finishing a draft that contains our results.
Our focus is to link marital sorting to stochastic sorting with special attention to the matching patterns. For example, we
do not assume that frictionless matching occurs along the diagonal.
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more (4=C). Earnings are expressed in 2014 US dollars. Earnings for males are denoted by ω and by

σ for the females. The joint distribution of earnings is H(ω, σ|x, y) with marginals F (ω|x) and G(σ|y).

I. Stochastic Sorting

This part bundles the sources of inequality that are due to the ex post distribution of income H(ω, σ).

We distinguish between individual earnings inequality and the correlation between partners’ earnings.

I.a. Increased Individual Earnings Inequality. For each level of education, in Figure 7 we

report the variance of earnings for males and females. The variance has gone up for all education

categories, but increasingly so for those with more years of schooling.27 Clearly, if each of the partners

in marriage has a more volatile income process, then this will lead to higher household inequality.

(a) Male Earnings: F (ω|x) (b) Female Earnings: G(σ|y)

Figure 7: Variance of Earnings by Education over Time: x, y ∈ {1, 2, 3, 4}.

I.b. Increased Correlation between Male and Female Earnings. Household earnings in-

equality will also be affected by the extent to which the spouses’ earnings are correlated. In line with

the findings by Lam (1997), we see an increase in the correlation for all education combinations of

marriages. Over time, the correlation in incomes of husband and wife over the entire sample of married

couples has increased from 13.4% in 1960 to 23.4% in 2014. The correlation in income of the spouses

reflects selection due to unobserved heterogeneity. Spouses with a college degree that have met while

studying finance or law end up in high paying jobs on Wall Street or in law firms. The correlation also

reflects choices, most notably the amount of labor supply, both at the extensive and at the intensive

margin. In the 1960s female labor force participation was a lot lower than in current times, introducing

negative correlation in earnings. Even today, females tend to work fewer hours than males. But labor

27This is a well-known stylized fact, see amongst many others Meghir and Pistaferri (2004).
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supply may also introduce positive correlation. Partners with high productivity will farm out more

child care freeing up more time to work and generate higher earnings, while partners with low earnings

both reduce labor supply to care for the children. In both cases correlation in earnings is positive.

II. Marital Sorting

In the literature, marital sorting on education is typically measured by regressing male education on

female education. An increase in the regression coefficient is interpreted as an increase in sorting.

However, this regression mixes the effect of two distinct mechanisms. First, there is the change in

the relative distribution of education between men and women. There has been gender equalization in

schooling. While educational attainment has gone up for both men and women, schooling for women

has increased substantially relative to that of men. Second, ex ante matching on education is not perfect

and we might expect a change in ex ante mismatch. While our model does not have much to say about

ex ante mismatch, we can account for its role in the decomposition of inequality.

II.a. Increased Female Educational Attainment. Educational attainment for both males and

females has increased. Figure 8 shows the cumulative frequency of years of schooling for both males and

females for 1960 and 2014. As is evident from the figure, both distributions have shifted massively to the

right, but the educational distribution for females has shifted more relative to that of males. So much

so that the distribution of education of females in 2014 stochastically dominates that of males. As a

result, under PAM without any ex ante mismatch, in 1960 we would see matches of males with females

that have lower education than themselves, whereas in 2014 we expect to see matches with females

that have higher education. In terms of the notation of the model, this implies that the equilibrium

matching µ(x) = Ψ−1 [Γ(x)] has moved upwards from below the diagonal to above the diagonal. We

must stress that this is due to the change in the distributions and has nothing to do with mismatch.

In Figure 9 we plot m(x, y), the actual number of (x, y) matches observed in the data, as well as fric-

tionless matching mf (x, y), the virtual number of (x, y) (Table 3 in the Appendix has the corresponding

matrices), constructed as if there is PAM and no mismatch, which can be derived from Γ(x) and Ψ(y).

Two properties can be observed: higher levels of education of both males has led to a rightward move

of the matching mass in both m and mf ; and the relatively higher increase in educational attainment

of females has led to an upward shift of the equilibrium allocation of matches µ(x).

II.b. Increased Marital Assortativeness (ex ante). A separate source of marital sorting is

the decrease in assortativeness or ex ante mismatch. Although our model has nothing to say about

ex ante mismatch, we can quantify the extent of its presence. To do so, we use a measure of distance

between the actually observed matching matrix m(x, y) and the frictionless matching matrix mf (x, y).

We calculate a measure d of distance between these two matrices as the sum of the absolute value of

the difference between each element, that is, d =
∑

x

∑
y |m(x, y)−mf (x, y)|.

If the matching m is perfectly frictionless and equal to mf , then the distance is zero. Using d,
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Figure 8: Distribution of Education: Γ(x) for males and Ψ(y) for females in 1960 and 2014.

we can reconstruct a virtual allocation of matches in which we adjust the weight on the frictionless

matching mf (x, y) with the distance measure from a different year. This is a way to control for marital

sorting due to a change in assortativeness and that due to a change in Γ(x) and Ψ(y).

When calculating d for our two focal years, we find that d1960 = 0.58 and d2014 = 0.62. Even though

the difference is small, quite surprisingly ex ante mismatch is higher in 2014 than it was in 1960. This

runs counter to the conventional wisdom that assortativeness in marriage has increased and has thus

contributed to household inequality.

Decomposing Household Inequality. We now decompose the different sources of inequality by

calculating the variance of household income in 2014 while setting one component to its 1960 value.

The objective is to gauge the share of the eightfold increase in the variance between 1960 and 2014 that

can be attributed to each component. In a nutshell, we calculate that in total the earnings distribution

accounts for more than 80% of the increase in household inequality. This can be attributed nearly

entirely to an increase in the variance of individual earnings (about 80%), and to a minor extent to an

increase in the correlation in earnings (about 10%). That these two components do not add up to what

is explained by the the 1960 sample distribution of earnings is due to the fact that we use a model to

do the decomposition.

The role of marital sorting is rather minor. First, while the total effect of marital sorting appears to

explains 58% of the increase in household inequality, this increase cannot be separated from the increase

in the variance of income (i.e. stochastic sorting). We can decompose the contribution of assortativeness

and the marginal distribution. Since assortativeness has barely changed (it even decreased slightly), it

is no surprise that it does not contribute to the change in inequality. The change in Γ and Ψ contributes
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(a) m(x, y) –1960 (b) m(x, y) –2014

(c) mf (x, y) – 1960 (d) mf (x, y) – 2014

Figure 9: Actual Distribution of Marriages by Education m(x, y) and Hypothetical Distribution without
ex-ante Mismatch: mf (x, y).

in two ways. First, it changes equilibrium matching because married females are more educated relative

to males, so even with perfect assortativeness and no ex ante mismatch, every male will be married

with a (weakly) higher educated female. The effect of gender equalization explains 13% of the increase

in the variance. Second, both males and females are more educated, and we know from the marginals

of the earnings distributions that the variance of the highly educated earners is higher. This explains

43% of the increase in variance. But again, this is not really due to marital sorting but to more people

being more educated: the composition of matches now puts more weight on high variance households

(those with high education). This second effect should therefore be attributed to stochastic and not to

marital sorting. We find that about 14% can be attributed to pure marital sorting, with most of the

change stemming from females becoming more educated relative to males.
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Baseline Sample Normal Model∗

Var2014(ω + σ) 4.01× 109 3.92× 109

Var1960(ω + σ) 0.49× 109 0.42× 109

Var2014(ω+σ)
Var1960(ω+σ)

8.18 9.33

X1960[x, y] Var2014(ω + σ;X1960)
Var2014(ω+σ;X1960)

Var1960(ω+σ)
X2014 explains

A. Stochastic Sorting (ex post)
1. Marginals Earnings∗ F1960, G1960 0.75× 109 1.78 81%
2. Correlation Earnings∗ ρ1960 3.50× 109 8.33 11%
Total (Normal model)∗ F1960, G1960, ρ1960 0.68× 109 1.39 85%
Total K1960 0.79× 109 1.61 80%

B. Marital Sorting (ex ante)
1. Marginals Education Γ1960,Ψ1960 1.70× 109 3.47 58%

Allocation: Gender Equal. Γ2014, Ψ̃2014, µ
f
1960 3.49× 109 7.12 13%

All more educated Γ1960, Ψ̃1960, µ
f
2014 2.29× 109 4.67 43%

2. Assortativeness Education d1960 3.97× 109 8.10 1%
Total M1960 1.69× 109 3.45 58%

∗ This decomposition assumes for each education pair [x, y] normality of the joint distribution of ω, σ, which implies
normality of the marginal distributions F,G, as well as normality of the distribution of ω + σ, in order to single out a
constant correlation coefficient ρ[x, y].

Table 1: Decomposition of Household Income Inequality. We calculate the Variance of household income
in 2014 in each case holding fixed one of the determinants at 1960 levels.

5 Concluding Remarks

To capture mismatch due to evolving types, we have proposed a simple model that generalizes the

frictionless matching model with deterministic types (Becker (1973)) to a matching model where types

are stochastic. The sorting pattern – whether there is PAM or NAM – now not only depends on the

characteristics of the technology through the ex post match value as in the deterministic matching

model, but it also depends on the stochastic order imposed on the distributions of the stochastic

characteristics. For instance, in the baseline case with TU we find that FOSD together with spm match

output ensures positive sorting. Our general theorem links a rich set of combinations of technological

features and stochastic orders on the distributions to the resulting optimal sorting pattern. The setup is

amenable to empirical applications for two reasons: first, mismatch is an integral part of the description

and the equilibrium of the model; and second, it provides a theoretical framework that rationalizes

selection from matching since the distribution of ex post outcomes across matches inherit correlation

patterns even if the outcomes at the match level are uncorrelated.

We also analyze the model with NTU, and derive conditions for PAM and NAM in two important
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settings: risk sharing and a principal-agent problems. First, the stochastic nature of the model leads

naturally to a problem of how to efficiently share risk. Equilibrium now also depends on the properties

of the partners’ utility functions. We provide a fairly general result for the oft-used HARA class, which

subsumes most of the standard utility functions. The sorting pattern now depends on a simple condition

that suitably generalizes the TU case. Second, we embed the canonical principal-agent setting in this

assignment model with stochastic types and characterize the equilibrium allocation.

Since mismatch is inherent in real world matching problems, we believe our model is a useful

extension of Becker’s when it comes to taking it to data. We show with two applications how the model

is amenable to address important economic questions about mismatch, incentives and inequality using

our stochastic sorting framework.

Finally, our model provides a formal justification for sorting in the presence of measurement error, a

common assumption to deal with mismatch in empirical work. We show that not all distributions of the

errors induce PAM, but we provide conditions for this to be the case. For example, if the distribution

of error terms satisfy FOSD and the ex post match surplus is spm, then PAM ensues.
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Appendix A Omitted Proofs

A.1 Proof of Proposition 1

With some abuse of notation, we denote the marginal densities and cdf’s by h(σ|x, y) =
∫ ω
ω h(ω, σ|x, y)dω,

h(ω|x, y) =
∫ σ
σ h(ω, σ|x, y)dσ, H(σ|x, y) =

∫ σ
σ h(s|x, y)ds, and H(ω|x, y) =

∫ ω
ω h(s|x, y)ds.

1. and 2. Integrating (1) by parts twice yields the following expression:

V (x, y) =

∫ ω

ω

(∫ σ

σ
q(ω, σ)h(ω, σ|x, y)dω

)
dσ

=

∫ σ

σ
q(1, σ)h(σ|x, y)dσ −

∫ ω

ω

∫ σ

σ
qω(ω, σ)

(∫ ω

ω
h(s, σ|x, y)ds

)
dωdσ

= q(1, 1)−
∫ σ

σ
qσ(1, σ)H(σ|x, y)dσ −

∫ ω

ω
qω(ω, 1)H(ω|x, y)dω +

∫ ω

ω

∫ σ

σ
qωσ(ω, σ)H(ω, σ|x, y)dωdσ.

By construction, H(σ|x, y) = G(σ|y) and H(ω|x, y) = F (ω|x). Hence, V is spm in (x, y) if and only if∫ ω

ω

∫ σ

σ
qωσ(ω, σ)H(ω, σ|x, y)dωdσ (16)

is spm in (x, y), which holds if either H is spm in (x, y) and q is spm in (ω, σ), or if both are sbm.

Under these conditions, PAM is optimal. Similarly, V is sbm in (x, y) if and only if (16) is nonpositive,

and this holds if H and q have opposite cross partials, in which case NAM is optimal. It is clear that

the conditions on q are also necessary we want the results to hold for all H spm or sbm in (x, y).

3. and 4. The expression for V (x, y) above reveals that (16) is the only term that depends on both

x and y and thus we focus on this term. Let q̂ ≡ qωσ and ĥ ≡ H, and let Ĥ be the integral of ĥ (this

can be a double integral depending on the case). Integrating by parts yields∫ ω

ω

∫ σ

σ
q̂(ω, σ)ĥ(ω, σ|x, y)dωdσ = q̂(1, 1)−

∫ σ

σ
q̂σ(1, σ)Ĥ(σ|x, y)dσ −

∫ ω

ω
q̂ω(ω, 1)Ĥ(ω|x, y)dω

+

∫ ω

ω

∫ σ

σ
q̂ωσ(ω, σ)Ĥ(ω, σ|x, y)dωdσ

= qωσ(1, 1)−
∫ σ

σ
qωσσ(1, σ)

(∫ σ

σ

∫ ω

ω
H(ω, s|x, y)dωds

)
dσ

−
∫ 1

0
qωωσ(ω, 1)

(∫ ω

ω

∫ σ

σ
H(s, σ|x, y)dσds

)
dω

+

∫ ω

ω

∫ σ

σ
qωωσσ(ω, σ)

(∫ ω

ω

∫ σ

σ
H(s, t|x, y)dsdt

)
dωdσ.

By hypothesis,
∫ σ
σ H(ω, σ|x, y)dσ does not depend on y and

∫ ω
ω H(ω, σ|x, y)dω does not depend on x.
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It follows that V is spm in (x, y) if and only if∫ ω

ω

∫ σ

σ
qωωσσ(ω, σ)

(∫ ω

ω

∫ σ

σ
H(s, t|x, y)dsdt

)
dωdσ

is spm in (x, y), which holds if either
∫ ω
ω

∫ σ
σ H is spm in (x, y) and qωσ is spm in (ω, σ), or if both

are sbm. Under these conditions, PAM is optimal. Similarly, NAM is optimal if qωσ and
∫ ω
ω

∫ σ
σ H

have opposite cross partials, in which case NAM is optimal. It is clear that the conditions on qωσ are

necessary if we want the results to hold for all
∫ ω
ω

∫ σ
σ H spm or sbm in (x, y), with

∫ ω
ω H and

∫ σ
σ H

independent of y and x, respectively. �

A.2 Stochastic Sorting under MPS

In this section we extend the binary example with MPS described in the text to the case of a continuum

of signal realizations ω and σ. Assume as in the text that ex ante types are binary, x ∈ {x`, xh} with

γ(xh) = γ ∈ (0, 1), and y ∈ {y`, yh} with ψ(yh) = ψ ∈ (0, 1).

Consider first PAM. Then the conditional cdf H(ω|σ) is given by

H(ω|σ) = m(xh|σ)F (ω|xh) + (1−m(xh|σ))F (ω|x`) = m(xh|σ) (F (ω|xh)− F (ω|x`)) + F (ω|x`),

where

m(xh|σ) =
γg(σ|µ(xh))

γg(σ|µ(xh)) + (1− γ)g(σ|µ(x`))
=

1

1 + (1−γ)
γ

g(σ|µ(xh))
g(σ|µ(x`))

.

It follows that ∫ t

ω
H(ω|σ)dω = m(xh|σ)

∫ t

ω
(F (ω|xh)− F (ω|x`)) dω +

∫ t

ω
F (ω|x`)dω. (17)

Notice that the behavior of
∫ t
ωH as a function of σ is determined by the behavior of m(xh|σ).

Consider the following characterization of MPS (Muller and Stoyan p. 28): “ A cdf G differs from

F by a MPS if and only if there exist constants a < b such that G − F is increasing on (−∞, a) and

(b,∞) and decreasing on (a, b).”

Let us apply it to our case. Assume that G(σ|µ(x`)) differs from G(σ|µ(xh)) by a MPS. Then

d (G(σ|µ(x`))−G(σ|µ(xh)))

dσ
= g(σ|µ(x`))− g(σ|µ(xh)) = g(σ|µ(x`))

(
1− g(σ|µ(xh))

g(σ|µ(x`))

)
.

By the definition above, this expression is nonnegative on [σ, σ̂) ∪ (σ̃, σ] and nonpositive on [σ̂, σ̃] for
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some constants σ̂ < σ̃. It follows that

g(σ|µ(xh))

g(σ|µ(x`))
=

≤ 1 if σ ∈ [σ, σ̂) ∪ (σ̃, σ]

≥ 1 if σ ∈ [σ̂, σ̃],

and thus m(xh|σ) is larger if σ ∈ [σ̂, σ̃] than if σ ∈ [σ, σ̂) ∪ (σ̃, σ]. Since
∫ t
ω (F (ω|xh)− F (ω|x`)) dω ≤ 0

by MPS, we obtain that
∫ t
ωH(ω|σ′)dω ≥

∫ t
ωH(ω|σ′′)dω for all σ′ ∈ [σ, σ̂)∪(σ̃, σ] and σ′′ ∈ [σ, σ̂)∪(σ̃, σ].

We have thus shown that under PAM and MPS, H(ω|σ) has a higher riskiness when σ is either low or

high than for intermediate values, as asserted in the text.

Consider now the NAM case. All we need to modify is the fact that now G(σ|µ(xh)) differs from

G(σ|µ(x`)) by a MPS (since xh is now matched to y`, who has a higher riskiness in G). Then

d (G(σ|µ(xh))−G(σ|µ(x`)))

dσ
= g(σ|µ(x`))− g(σ|µ(xh)) = g(σ|µ(x`))

(
g(σ|µ(xh))

g(σ|µ(x`))
− 1

)
.

Proceeding as before, we obtain that under NAM, H(ω|σ) has a lower riskiness when σ is either low

or high than for intermediate values, completing the stochastic sorting analysis of this case.

A.3 Proof of Proposition 2

The first-order condition of the risk sharing problem is(
a(q(ω, σ)− c(ω, σ))

1− α
+ b

)α−1
= λ

(
ac(ω, σ)

1− α
+ b

)α−1
∀(ω, σ),

where λ is the multiplier of the constraint. Solving for c(ω, σ) we obtain

c(ω, σ) =
aq(ω, σ) + b(1− α)

(
1− λ

1
α−1

)
a
(

1 + λ
1

α−1

) .

Inserting c(ω, σ) into the constraint

1− α
α

(∫ ω

ω

∫ σ

σ

(
ac(ω, σ)

1− α
+ b

)α
h(ω, σ|x, y)dωdσ − 1

)
= v,

reveals that

1 + λ
1

α−1 =

∫ ωω ∫ σσ
(
aq(ω,σ)
1−α + 2b

)α
h(ω, σ|x, y)dωdσ

vα
1−α + 1


1
α

.

The function Φ then becomes
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Φ(x, y, v) =
1− α
α

(∫ ω

ω

∫ σ

σ

(
a(q(ω, σ)− c(ω, σ))

1− α
+ b

)α
h(ω, σ|x, y)dωdσ − 1

)

=
1− α
α

 λ
α
α−1(

1 + λ
1

α−1

)α ∫ ω

ω

∫ σ

σ

(
aq(ω, σ)

1− α
+ 2b

)α
h(ω, σ|x, y)dωdσ − 1


=

1− α
α

((
V

1
α (x, y)−

(
vα

1− α
+ 1

) 1
α

)α
− 1

)
,

where the second line follows by substituting the expression for c(ω, σ), and the third by using the

expression for λ and equation (7). This shows equation (6).

Differentiating Φ yields, after manipulation, that the sign of Φxy − (Φy/Φv)Φvx is equal to the sign

of ((1− α)/α)((1− α)/α)VxVy + V Vxy), completing the proof of the proposition. �.

Regarding the case α = 0 mentioned in the text, we first note that

lim
α→0

(1− α)

α

((
ac

1− α
+ b

)α
− 1

)
= lim

α→0
(1− α)1−α

(
(ac+ b(1− α))α − 1

α

)
= lim

α→0

(ac+ b(1− α))α log(ac+ b(1− α))

1

= log(ac+ b),

where the first equality follows by rewriting, the second by L’Hopital’s rule, and the third by taking

limit. From the first-order condition we obtain (a(q(ω, σ)− c(ω, σ))+ b)−1 = λ(ac(ω, σ)+ b)−1 and thus

c(ω, σ) =
λaq(ω, σ) + (λ− 1)b

a(1 + λ)
.

Inserting this expression in the constraint we obtain after some manipulation that λ/(1+λ) = ev−V (x,y),

where V (x, y) =
∫ ω
ω

∫ σ
σ log(aq(ω, σ) + 2b)h(ω, σ|x, y)dωdσ. Now we can derive Φ as follows:

Φ(x, y, v) =

∫ ω

ω

∫ σ

σ
log(a(q(ω, σ)− c(ω, σ) + b)h(ω, σ|x, y)dωdσ

=

∫ ω

ω

∫ σ

σ
log

(
1

1 + λ
(aq(ω, σ) + 2b)

)
h(ω, σ|x, y)dωdσ

= log

(
1− λ

1 + λ

)
+ V (x, y)

= log
(
eV (x,y) − ev

)
.

This is TU representable as Φ̂(x, y, v) = eV (x,y) − ev, and thus sorting depends on the sign of the cross

partial of eV (x,y), which reduces to the sign of Vxy + VxVy as asserted in the text.
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A.4 Derivation of Optimal Contract under Moral Hazard

This problem can be written as28

max
β,α,e

∫
[(1− α(ω))(ωt+ ωe(ω) + β(ω)] dF (ω|x) (18)

s.t.

∫
−e
−r

(
β(ω)+α(ω)(ωt+ωe(ω))− e

2

2
− rα(ω)

2ω2s2

2

)
dF (ω|x) ≥ −e−ra (19)

α(ω) =
e(ω)

ω
(20)

Substituting for α from the IC constraint, this problem is equivalent to:

max
β,e

∫ [(
1− e(ω)

ω

)
(ωt+ ωe(ω) + β(ω)

]
dF (ω|x) (21)

s.t. 1−
∫
−e
−r

(
β(ω)+e(ω)(t+e(ω))− e

2

2
− re(ω)

2s2

2
−a

)
dF (ω|x) ≥ 0. (22)

Denoting the multiplier on the constraint in the Lagrangian L by λ, and maximizing pointwise for each

ω, we obtain:

∂L

∂β
= −1f(ω|x) + rλe−r[A]f(ω|x) = 0

⇒ λ =
1

r
er[A] (23)

where A = β(ω) + e(ω) (t+ e(ω))− e2

2 −
re(ω)2s2

2 − a.

∂L

∂e
= −(t+ e) + (ω − e) + rλe−r[A]

(
t+ 2e− e− res2

)
= 0

= −e+ ω − res2 = 0

⇒ e(ω) =
ω

1 + rs2

where we have used λrer[A] = 1 from (23).

Using this solution for e in the first order condition (23), we obtain:

λ =
1

r
e
r

[
β+ 1

1+rs2

(
ωt+ ω2

1+rs2

)
− ω2

2(1+rs2)2
− rω2s2

2(1+rs2)2
−a

]
.

The Lagrange multiplier is by construction a constant. Now this equation has to hold for each ω, so

that the only way this can be satisfied is if the exponent is equal to 0 so the RHS is a constant as well

28Where we use the fact that if X is normally distributed with mean µ and variance σ2, then E
[
eλX

]
= eλµ+

1
2
λ2σ2

.
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for all ω.29 This implies that λ = 1
r > 0. Hence,

β = a− ωt

1 + rs2
− ω2

(1 + rs2)2
+

ω2

2 (1 + rs2)2
+

rω2s2

2 (1 + rs2)2

= a− ωt

1 + rs2
+

ω2

2 (1 + rs2)2
(
rs2 − 1

)
.

The solution to the contracting problem is the quadruple (α(ω), β(ω), e(ω), λ):

α(ω) =
1

1 + rs2

β(ω) = a− ωt

1 + rs2
+

ω2

2 (1 + rs2)2
(
rs2 − 1

)
e(ω) =

ω

1 + rs2

λ =
1

r

Using the expression for the optimal effort level, we obtain:

q(ω, σ, y) =
ω2

1 + rs2
+ ω(t+ σ), (24)

which depends on y through s2 and t. Since w(ω, q) = β(ω) + α(ω)q, it follows that

w(ω, q) = a+
ω2

2 (1 + rs2)
+

ωσ

1 + rs2
. (25)

Finally, using the fact that π(ω, q) = q − w(ω, q) we obtain:

π(ω, q) = ωt− a+
ω2

2 (1 + rs2)
+

rs2ωσ

1 + rs2
, (26)

which completes the derivation of the optimal contract.

A.5 Proof of Proposition 3

Integration by parts yields

V (x, y) = q(ω, y)−
∫ ω

ω
qω(ω, y)F (ω|x)dω.

Part 1. follows from the cross partial derivative Vxy =
∫ ω
ω qωy(ω, y)(−Fx(ω|x))dω, which under FOSD

is nonnegative if q is spm and nonpositive if q is sbm.

29Notice that for each ω, this is exactly the same solution as if there was no uncertainty about ω, or equivalently, for
each ω we solve the standard Holmström and Milgrom (1987) problem without the ”expected” participation constraint
(integrated over ω). This is a result, not an assumption.
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Another integration by parts yields

V (x, y) = q(ω, y)− qω(ω, y)

∫ ω

ω
F (ω|x)dω +

∫ ω

ω
qωω(ω, y)

(∫ ω

ω
F (s|x)ds

)
dω.

Since under IR the mean remains constant and
∫ ω
ω F (s|x)ds decreases in x, it follows that the second

term is independent of x the cross partial derivative of V is given by Vxy =
∫ ω
ω qωωy(ω, y)

(∫ ω
ω Fx(s|x)

)
dsdω,

which is nonnegative if qωωy ≤ 0 and nonpositive if qωωy ≥ 0. This proves part 2. of the proposition. �

Appendix B Mismatched CEOs

B.1 Derivation of Expected Wages, Profits, and Output

Given that σ ∼ N (0, s2(x)) and ω ∼ LN (k(x),m2(x)), we can derive explicit expressions for expected

wages, expected profits, and expected output:30

Ew(x) =

∫ ∫
w(ω, σ;x)dF (ω|k(x),m(x))dG(σ|0, s(x))

= a(x) +

∫
ω2

2(1 + rs2)
dF (ω|k,m)

= a(x) +
e2(k+m

2)

2(1 + rs2)

Eπ(y) =

∫ ∫
π(ω, σ; y)dF (ω|k(y),m(y))dG(σ|0, s(y))

=

∫ (
ωt− a(x) +

ω2

2 (1 + rs2)

)
dF (ω|k(y),m(y))

= ek+
m2

2 t− a(x) +
e2(k+m

2)

2(1 + rs2)
.

Since V (x, y) = Ew(x) + Eπ(y) we immediately obtain:

V (x, y) = ek+
m2

2 t+
e2(k+m

2)

1 + rs2
. (27)

Expected output is evaluated over the entire domain of pairs (x, y). Notice that it can be decomposed

into two components. The first, ek+
m2

2 t, measures the contribution to the match value from the expected

types Eω and Eσ. This term is similar to the standard one in Becker (1973) and in the applied models

of Gabaix and Landier (2008) and Terviö (2008). The second component is due to moral hazard and

incentive provision. As is well known in the Holmström and Milgrom (1987) model, a higher variance

in output s2 reduces match output since incentive provision is weaker for any level of effort, and the

effort implemented is also lower. But this term is increasing in the expected value of ω2, which is equal

30We use the fact that with F (x) ∼ LN (µ, σ2),
∫
x2dF (x) = e2(µ+σ

2) and
∫
xdF (x) = ee

µ+σ
2

2 .
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to e2(k+m
2) since ω is lognormally distributed.

We can also immediately derive the expected return:

ER(y) =
Eπ(y)

V0(y)
=
ek+

m2

2 t

V0
− a

V0
+

e2(k+m
2)

2V0(1 + rs2)
.

We can also explicitly derive a(x), the expression which is given by a(x) = a(x) +
∫ x
x Vx(z, µ(z))dz,

where µ(z) = z. From V (x, y) we can write:

Vx(z, z) = ek+
m2

2 (k′ +mm′)t+
e2(k+m

2)(k′ +mm′)

1 + rs2
,

and hence

a(x) = a(x) +

∫ x

x

(
ek(z)+

m(z)2

2 (k′(z) +m(z)m′(z))t(z) +
e2(k(z)+m

2(z))(k′(z) + 2u(z)m(z)′)

1 + rs(z)2

)
dz.

To verify that the identifying assumption – that there is PAM – is satisfied, we need to check whether

the match surplus function is spm, that is, Vxy ≥ 0, where

Vxy(x, y) = e
m2

2
+k
(
mm′ + k′

)
t′ − 4 r e2m

2+2 k (2mm′ + k′) s s′

(1 + r s2)2
(28)

Notice that even if k,m, t, s are increasing in x or y, equation (28) may be negative due to the

second term. The first term, when positive, is the standard Becker force towards PAM. The second

term, due to moral hazard, is submodular because s is increasing in y, and thus it is a force towards

NAM. The monotonicity of the variance makes the verification of the PAM assumption nontrivial.

B.2 Likelihood Function

With F log-normal and G normally distributed, the log-likelihood function to be maximized can be

written as:

lnL(θ|w, π, x) = −
n∑
i=1

1

lnωi

[lnωi − k(x)]2

2u(x)2
−

n∑
i=1

[σi − t(x)]2

2s(x)2
+ ln |J | − n [lnm(x) + ln s(x) + ln(2π)] ,

where we obtain expression for ω and σ from solving (12)–(13):

w = a+
ω2

2 (1 + rs2)
+

ω

1 + rs2
σ

π = ωt− a+
ω2

2 (1 + rs2)
+

rs2

1 + rs2
ωσ
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substituting one in the other:

π = ωt− a+
ω2

2 (1 + rs2)
+ rs2

(
w − a− ω2

2 (1 + rs2)

)
gives a quadratic equation in ω.

−π + ωt− (1 + rs2)a+ rs2w + (1− rs2) ω2

2 (1 + rs2)
= 0

1− rs2

2 (1 + rs2)
ω2 + ωt− (1 + rs2)a+ rs2w − π = 0

(1− rs2)ω2 + 2
(
1 + rs2

)
tω − 2(1 + rs2)2a+ (rs2w − π)2

(
1 + rs2

)
= 0

(−1 + rs2)ω2 − 2t
(
1 + rs2

)
ω + 2(1 + rs2)

(
π + a− rs2(w − a)

)
= 0

The discriminant (divided by 4) of this quadratic form is:

D = t2(1 + rs2)2 − 2(1 + rs2)(−1 + rs2)
(
π + a− rs2(w − a)

)
= (1 + rs2)

[
t2(1 + rs2)− (−1 + rs2)2

(
π + a− rs2(w − a)

)]
and then the solutions for ω are:

ω =
t
(
1 + rs2

)
±
√
D

−1 + rs2

and using (12) to solve for σ we obtain:

σ = (w − a)
1 + rs2

ω
− ω

2

= (w − a)
1 + rs2

t(1+rs2)±
√
D

−1+rs2

−
t(1+rs2)±

√
D

−1+rs2

2

= (w − a)
(1 + rs2)(−1 + rs2)

t (1 + rs2)±
√
D
−
t
(
1 + rs2

)
±
√
D

2(−1 + rs2)

So we get:

ω =
t(1 + rs2) +

√
D

−1 + rs2

σ = (w − a)
(1 + rs2)(−1 + rs2)

t (1 + rs2)±
√
D
−
t
(
1 + rs2

)
±
√
D

2(−1 + rs2)

(with D =
(
rs2 + 1

) (
2a+ 2π + t2 − 2πrs2 − 2rs2w − 2ar2s4 + rs2t2 + 2r2s4w

)
) and where |J | is the Jacobian

of the transformation:

|J | =

∣∣∣∣∣ ∂ω
∂w

∂ω
∂π

∂σ
∂w

∂σ
∂π

∣∣∣∣∣ .
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B.3 Estimated Parameters

Mean ω st. dev. ω
k0 k1 k2 m0 m1 m2

9.26 0.01 0.00 0.72 -0.02 0.00

Mean σ st. dev. σ
t0 t1 t2 s0 s1 s2

75.36 0.07 0.00 296.31 2.95 0.00

Table 2: Estimated Parameters.

B.4 Cost of Mismatch: Decomposition

Denote the realization of ω, σ by ω̂, σ̂. Then we can construct the order of the ex post types x̃ and rematch x̃ = y.

This implies not only a new matched partner but also a new level of effort by the CEO ẽ = ω̂/(1 + rs(x̃)2). Ex

post output is equal to q = ω (e+ t(y) + σ), and in the case of the original allocation we write it as q(x, e). The

new output after rematching and adjusting effort is written as q(x̃, ẽ). We can also write output as if there was

a new allocation x̃ = y but where effort was as under the original allocation, e(x) = ω̂/(1 + rs(x)2) denoted by

q(x̃, e). These three expressions are equal to:

q(x, e) = ω̂

(
ω̂

1 + rs(x)2
+ t(x) + σ̂

)
q(x̃, e) = ω̂

(
ω̂

1 + rs(x)2
+ t(x̃) + σ̂

)
q(x̃, ẽ) = ω̂

(
ω̂

1 + rs(x̃)2
+ t(x̃) + σ̂

)
.

We are interested in the output change after ω is realized, and before σ. We therefore take the expectation of

match output with respect to σ: Eσq(x, e) = ω̂
(

b(x)ω̂
1+rs(x)2 + t(x)

)
, where σ simply cancels because it is additive

and has zero mean.

Our objective is to decompose the total output change from rematching, and which part is due to the change

in the allocation x̃ and which part is due to the change in effort ẽ. Denote by ∆(x̃, ẽ|x, e) = Eσq(x̃, ẽ)−Eσq(x, e)
the change in output from both a change in the allocation and the effort; by ∆(x̃, ẽ|x̃, e) = Eσq(x̃, ẽ)− Eσq(x̃, e)
the change in output from a change in effort while keeping the allocation unchanged at the ex post level; and by

∆(x̃, e|x, e) = Eσq(x̃, e)−Eσq(x, e) the change in output from a change in the allocation while keeping the effort

unchanged at the original level. Then:

∆(x̃, ẽ|x, e) = ∆(x̃, ẽ|x̃, e) + ∆(x̃, e|x, e)

= ω̂
ω̂

1 + rs(x̃)2︸ ︷︷ ︸
output change due to effort

+ ω̂
b(x)ω̂

1 + rs(x)2
+ ω̂t(x̃)− ω̂t(x)︸ ︷︷ ︸

output change due to mismatch

.
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And the total output gain from this exercise is:

∑
x

∆(x̃, ẽ|x, e) =
∑
x

∆(x̃, ẽ|x̃, e) +
∑
x

∆(x̃, e|x, e),

where x̃ and ẽ depend on x. Observe that the output gain of this rematching is positive provided expected

output Eσq(ω, y) is supermodular. We can readily verify that this is the case for the estimated technology and

for the domain of observed realizations of ω. Note that supermodularity V (x, y) does not necessarily imply

supermodularity of Eσq(ω, y), though they are closely related.

Appendix C Household Income Inequality

C.1 Additional Table – Table 3

x
m(x, y) 1 2 3 4 Ψ(y)

y

4 0.51 0.90 0.95 4.04 6.41
3 1.96 2.60 2.49 3.30 10.35
2 13.79 15.73 4.75 3.95 38.22
1 34.85 7.60 1.78 0.79 45.03

Γ(x) 51.11 26.84 9.97 12.07 100.00

(a) m(x, y) – 1960

x
m(x, y) 1 2 3 4 Ψ(y)

y

4 0.51 6.22 7.77 29.01 43.51
3 1.11 8.65 8.77 5.89 24.42
2 2.47 14.68 5.44 3.41 25.99
1 3.37 1.86 0.54 0.31 6.07

Γ(x) 7.46 31.42 22.51 38.62 100.00

(b) m(x, y) – 2014

x
mf (x, y) 1 2 3 4 Ψ(y)

y

4 6.41 6.41
3 4.69 5.66 10.35
2 11.38 26.84 5.28 38.22
1 34.85 45.03

Γ(x) 51.11 26.84 9.97 12.07 100.00

(c) mf (x, y) – 1960

x
mf (x, y) 1 2 3 4 Ψ(y)

y

4 4.89 38.62 43.51
3 6.80 17.62 24.42
2 1.37 24.62 25.99
1 6.09 6.07

Γ(x) 7.46 31.42 22.51 38.62 100.00

(d) mf (x, y) – 2014

Table 3: Distribution of Marriages by Education (in percentage): actual and frictionless.

C.2 Derivation of the Formulas for Table 1

We are assuming that for each pair (x, y), wages are jointly normally distributed, i.e.

(ω, σ;x, y) ∼ N (µω[x, y], µσ[x, y], sω[x, y], sσ[x, y], ρ[x, y]).

Then the marginals F (ω|x, y) = N (µω[x, y], sdω[x, y]) and G(σ|x, y) = N (µσ[x, y], sdσ[x, y]) are normal. Using

the general formula:

Var(ω + σ|x, y) = Var(ω|x, y) + Var(σ|x, y) + 2Cov(ω, σ|x, y)

= s2
ω[x, y] + s2

σ[x, y] + 2ρ[x, y]sω[x, y]sσ[x, y] (29)
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Normality of the joint distribution of (ω, σ) implies that ω+σ is normally distributed. To calculate (29) for each

pair (x, y) we use the sample means and standard deviations as well as the sample covariance:

µ̂ω[x, y] = E[ω|x, y]

ŝ2
ω[x, y] = Var[ω|x, y]

µ̂σ[x, y] = E[σ|x, y]

ŝ2
σ[x, y] = Var[σ|x, y]

ρ̂[x, y] =
Cov(ω, σ|x, y)√

Var [[ω|x, y]] Var [[σ|x, y]]
.

To calculate the Var[ω + σ] for the entire sample, we use again the general formula for the variance of the

sum of two random variables:

Var[ω + σ] = Var[ω] + Var[σ] + 2Cov[ω, σ]. (30)

where

Cov[ω, σ] =E [E[ωσ|x, y]]− E [E[ω|x, y]]E [E[σ|x, y]]

=E [Cov[ω, σ|x, y] + µω[x, y]µσ[x, y]]− E [µω[x, y]]E [µσ[x, y]]

=
∑
x

∑
y

ρ[x, y]sω[x, y]sσ[x, y]m(x, y) + Cov(µω[x, y], µσ[x, y])

Var[ω] =
∑
x

∑
y

s2
ω[x, y]m(x, y)

Var[σ] =
∑
x

∑
y

s2
σ[x, y]m(x, y).

Then, substituting these in the expression for the variance (30), we obtain:

Var[ω + σ] =
∑
x

∑
y

s2
ω[x, y]m(x, y) +

∑
x

∑
y

s2
σ[x, y]m(x, y) + 2

∑
x

∑
y

ρ[x, y]sω[x, y]sσ[x, y]m(x, y)

+ 2
∑
x

∑
y

µω[x, y]µσ[x, y]m(x, y)− 2
∑
x

∑
y

µω[x, y]m(x, y)
∑
x

∑
y

µσ[x, y]m(x, y). (31)

To calculate the variance using this formula for a given year (1960 or 2014), we use the sample means, sample

variances, sample correlations and the matchings for that year: µ̂ω[x, y], ŝ2
ω[x, y], µ̂σ[x, y], ŝ2

σ[x, y], ρ̂[x, y],m(x, y).

C.2.1 Stochastic Sorting, Marginals: Var2014(ω + σ;F1960[x, y], G1960[x, y])

Apply equation (31) with all variables from 2014, except those that relate to F and G:31

Var[ω + σ] =
∑
x

∑
y

s2
ω,1960[x, y]m(x, y) +

∑
x

∑
y

s2
σ,1960[x, y]m(x, y) + 2

∑
x

∑
y

ρ[x, y]sω,1960[x, y]sσ,1960[x, y]m(x, y)

+ 2
∑
x

∑
y

µω,1960[x, y]µσ,1960[x, y]m(x, y)− 2
∑
x

∑
y

µω,1960[x, y]m(x, y)
∑
x

∑
y

µσ,1960[x, y]m(x, y).

31If there is no year subscript in the variable, it is assumed to be for 2014. When it is for 1960 it is made explicit.
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C.2.2 Stochastic Sorting, Correlation: Var2014(ω + σ; ρ1960[x, y])

Apply equation (31) with all sample means from 2014, except those that relate to ρ:

Var[ω + σ] =
∑
x

∑
y

s2
ω[x, y]m(x, y) +

∑
x

∑
y

s2
σ[x, y]m(x, y) + 2

∑
x

∑
y

ρ1960[x, y]sω[x, y]sσ[x, y]m(x, y)

+ 2
∑
x

∑
y

µω[x, y]µσ[x, y]m(x, y)− 2
∑
x

∑
y

µω[x, y]m(x, y)
∑
x

∑
y

µσ[x, y]m(x, y).

C.2.3 Total Earnings: Var2014(ω + σ;K1960[x, y])

Here we use the sample distribution of joint earnings H in 1960, without the normality assumption:

Var2014[ω + σ;K1960[x, y]] =

(∑
ω

∑
σ

(ω + σ)2
∑
x

∑
y

k1960(ω, σ|x, y)m2014(x, y)

)

−

(∑
ω

∑
σ

(ω + σ)
∑
x

∑
y

k1960(ω, σ|x, y)m2014(x, y)

)2

=
∑
x

∑
y

(∑
ω

∑
σ

(ω + σ)2k1960(ω, σ|x, y)m2014(x, y)

)

−

(∑
x

∑
y

(∑
ω

∑
σ

(ω + σ)k1960(ω, σ|x, y)

)
m2014(x, y)

)2

.

C.2.4 Marital Sorting, Marginals: Var2014(ω + σ; Γ1960[x, y],Ψ1960[x, y])

We now keep all the features of the income distribution H constant, and we vary the distribution of matches M .

To decompose the change in matching due to a change in the marginals Γ(x) and Ψ(y) and the mismatch, we

use the measure of distance d =
∑
x

∑
y |m(x, y)−mf (x, y)|.

To that effect, we calculate the variance in for 2014 assuming that the marginals Γ(x),Ψ(y) are from 1960.

We use the distributions from 1960 adjusting them so that the mismatch is as in 2014:

mmarginals =

{
m1960(x, y) 1−d2014

1−d1960 if mf
1960(x, y) > 0

m1960(x, y)d2014d1960
if mf

1960(x, y) = 0

Var2014[ω + σ;M1960[x, y]] =

(∑
ω

∑
σ

(ω + σ)2
∑
x

∑
y

k2014(ω, σ|x, y)mmarginals(x, y)

)

−

(∑
ω

∑
σ

(ω + σ)
∑
x

∑
y

k2014(ω, σ|x, y)mmarginals(x, y)

)2

.

C.2.5 Marital Sorting, Allocation: Gender equalization: Var2014(ω+σ; Γ1960, Ψ̃1960, µ2014[x, y][x, y])

We change the mass of education to that of 1960, but we keep the equilibrium matching µ2014(x). To do so, we

need to adjust at least one of the distributions, in this case we change Ψ(y) to Ψ̃(y). Hence, we have Γ1960, µ2014

and Ψ̃1960 such that: Ψ̃1960(µ2014(x)) = Γ1960. With discrete type distributions, this means that the new matching

allocation µ must yield this different distribution of matches. Because of simplicity, we focus on the variance
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under the frictionless matching mf to adjust the matching. Our procedure is as follows. We construct mf
mass to

account for the distributions Γ1960(x) and Ψ1960(y) as follows. We first pin down the off-diagonal elements using

the proportional rule mf
mass(x, y) = mf

1960(x, y)γ2014(x)/γ1960(x). Then, starting at the top we recursively pin

down the frictionless allocation along the diagonal. This procedure results in the following mf
mass(x, y):

x
mf (x, y) 1 2 3 4 Ψ(y)

y

4 20.51 20.51
3 10.59 18.11 28.70
2 1.66 31.42 11.92 45.00
1 5.80 5.80

Γ(x) 7.46 31.42 22.51 38.62 100.00

Then we calculate the Variance as:

Var2014[ω + σ; Γ1960, Ψ̃1960, µ2014[x, y]] =

(∑
ω

∑
σ

(ω + σ)2
∑
x

∑
y

k2014(ω, σ|x, y)mf
mass(x, y)

)

−

(∑
ω

∑
σ

(ω + σ)
∑
x

∑
y

k2014(ω, σ|x, y)mf
mass(x, y)

)2

.

C.2.6 Marital Sorting, All More Educated: Var2014(ω + σ; Γ2014, Ψ̃2014, µ1960[x, y][x, y])

Now we change the equilibrium matching µ1960(x) and keep the mass of education at the level of 2014. Again, we

need to adjust one of the distributions to allow for the µ to change, so we change Ψ2014(y) again to Ψ̃2014(y) such

that Ψ̃2014(µ1960(x)) = Γ2014. For simplicity, we will again adjust the frictionless matching allocation mf (x, y)

and not m(x, y). As before, we calculate mf
µ(x, y) starting with the off diagonal using the proportional formula

mf
µ(x, y) = mf

2014(x, y)γ1960(x)/γ2014(x). Then, from the top we recursively pin down the frictionless allocation.

This procedure results in the following mf
µ(x, y):

x
mf (x, y) 1 2 3 4 Ψ(y)

y

4 2.17 12.07 14.24
3 5.81 7.80 13.61
2 9.39 21.03 30.42
1 41.72 41.72

Γ(x) 51.11 26.84 9.97 12.07 100.00

Var2014[ω + σ; Γ2014, Ψ̃2014, µ1960[x, y]] =

(∑
ω

∑
σ

(ω + σ)2
∑
x

∑
y

k2014(ω, σ|x, y)mf
µ(x, y)

)

−

(∑
ω

∑
σ

(ω + σ)
∑
x

∑
y

k2014(ω, σ|x, y)mf
µ(x, y)

)2

.
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C.2.7 Marital Sorting, Assortativeness: Var2014(ω + σ;α1960[x, y][x, y])

We calculate the variance assuming the mismatch is as in 1960 but the marginals are from 2014. With the distance

measure d we construct a distribution of matches in 2014 that inherits the amount of mismatch from 1960. To

do so, we endow the elements of M that are non-zero in Mf with a the value m(x, y)(1− d1960)/(1− d2014) that

adjusts the distribution with the distance measure from 1960, and likewise for the masses that are zero in Mf :

mmismatch =

{
m2014(x, y) 1−d1960

1−d2014 if mf
2014(x, y) > 0

m2014(x, y)d1960d2014
if mf

2014(x, y) = 0,

Var2014[ω + σ;M1960[x, y]] =

(∑
ω

∑
σ

(ω + σ)2
∑
x

∑
y

k2014(ω, σ|x, y)mmismatch(x, y)

)

−

(∑
ω

∑
σ

(ω + σ)
∑
x

∑
y

k2014(ω, σ|x, y)mmismatch(x, y)

)2

.

C.2.8 Total Marital Sorting: Var2014(ω + σ;M1960[x, y])

Here we use the sample distribution of matches M for each subgroup (x, y) in 1960.

Var2014[ω + σ;M1960[x, y]] =

(∑
ω

∑
σ

(ω + σ)2
∑
x

∑
y

k2014(ω, σ|x, y)m1960(x, y)

)

−

(∑
ω

∑
σ

(ω + σ)
∑
x

∑
y

k2014(ω, σ|x, y)m1960(x, y)

)2

.
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