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Abstract

This paper studies asset pricing in a multisector model in which sectors are con-

nected to each other through an input-output network. Changes in the structure of

the network are sources of systematic risk reflected in equilibrium asset prices. There

are two key characteristics of the network that matter for asset prices: network con-

centration and network sparsity. Network concentration measures the degree to which

equilibrium output is dominated by few large sectors while network sparsity measures

the average input specialization of the economy. Furthermore, these two production-

based asset pricing factors are determined by the structure of the network of production

and can be computed from input-output data. By sorting stocks based on their expo-

sure to the network factors, I find a return spread of 6% per year on portfolios sorted

on sparsity-beta and −4% per year on portfolios sorted on concentration-beta. These

return gaps cannot be explained by standard asset pricing models such as the CAPM

or the Fama French three-factor model. A calibrated model matches the network factor

betas and return spreads alongside other asset pricing moments.
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1 Introduction

Firms use a variety of inputs to build their own products, collectively spending trillions of

dollars and constituting a network of input-output linkages. As technology evolves, indus-

tries may use different inputs to produce their final output. For example, since the 1970s,

plastics have become a more suitable substitute for wood and metal materials, reshaping

the production process for manufacturing and construction. Changes in the input-output

network have implications for the overall economy as they alter sectoral linkages. In this

paper, I investigate the implications of changes in the input-output network for asset prices

and aggregate quantities such as consumption and GDP. I show that changes in the network

are a source of systematic risk that is priced in equilibrium. To the best of my knowledge,

this paper is the first to explore the asset pricing implications of a sectoral network model.

The main result of this paper is that there are two key network factors that matter for

asset prices: network concentration and network sparsity. The network factors are character-

istics that describe specific attributes of sectoral linkages. I demonstrate that concentration

and sparsity constitute sufficient statistics for aggregate risk. Although the entire input-

output linkage network is multidimensional, we may focus on these two characteristics when

assessing systematic risk. I derive the network factors from a general equilibrium model,

and these factors determine the dynamics of aggregate output and consumption. Moreover,

innovations in concentration and sparsity may be computed from the data and empirically

tested as new asset pricing factors. Return data shows that exposure to these network factors

is reflected in average returns as predicted by my model.

Network concentration measures how concentrated sectors’ output shares are in equilib-

rium. Sectors’ equilibrium output shares represent how important the output of a particular

sector is to all other sectors as a source of input. If the output of a sector is widely used as

input by other sectors, then it has high output share in equilibrium. Whether a sector has

high or low output share depends on the network and therefore concentration is an attribute

of the network.

Network sparsity is a characteristic of the sectoral linkages distribution. Sectoral linkages

are directly related to how important each input is to a particular sector, and sparsity

measures the degree of input specialization of the economy and how crowded or dense these

linkages are in the network. A network with high sparsity has fewer linkages, but these

linkages are stronger and, on average, firms rely on fewer sources of input.

Empirically, input-output data from the BEA provides a picture of the production net-

work of the U.S. economy. Figure 1 plots the network representation of the input-output

linkages, where nodes (circles) represent different sectors and edges (arrows) represent input
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Figure 1: Input-Output Network Representation at the Sector Level

This picture contains the Network representation of the BEA Input-Output data for 2012 at the sector level (two-digit NAICS).
An arrow from sector j to sector i means that j is selling to i; the intensity of the arrow (transparency and width) captures
how much i is buying from j relative to other suppliers. The label in each node is the 2-digit NAICS sector. The size of a node
(sector) represents the output share; the diameter of a node is proportional to the output share.

flow between sectors. An arrow from sector j to sector i illustrates the input flow from sector

j to sector i. The size of a node represents the sector’s output share, and the thickness of

an edge represents the input expenditure share. Concentration captures the degree to which

output is dominated by few sectors, and it is measured by the concentration over node sizes.

If there are a few large nodes (sectors with large output share) as the graph illustrates to

be the case for the U.S. economy, then concentration is greater than in a economy in which

nodes had the same size. Sparsity captures the degree of input specialization and thus mea-

sures how thick and scarce network edges are. An economy with high sparsity and therefore

high input specialization has fewer edges, but these edges are thicker. Hence, concentration

is a characteristic of the nodes’ size distribution whereas sparsity is a characteristic of the

edges’ thickness distribution.

When production is subject to diminishing returns, an economy with high concentration

has few large sectors with lower return to investments. The lower productivity of large sectors

affects other sectors through equilibrium prices. As a result, high concentration leads to

lower aggregate consumption and higher marginal utility. Thus innovations in concentration
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carry a negative price of risk. Assets that have high returns when concentration increases, i.e.

assets with high concentration-beta, are hedges against drops in aggregate consumption, and

they should have lower expected returns. A portfolio that goes long high concentration-beta

stocks and short low concentration-beta stocks should have negative average returns.

Sparsity is directly related to productivity gains due to sectors’ connectivity. In my

model, firms have a Cobb-Douglas production technology. They use each others’ inputs in

order to produce their own final output, and the network specifies the importance of each

input to the final output.1 For each sector, the network defines the elasticity of its output

with respect to each input as well as the marginal product of inputs. Therefore, the network

defines the shape of the production function.

When sparsity increases, firms reoptimize inputs based on the marginal product, substi-

tuting inputs that had their marginal product decreased for inputs that had their marginal

product increased. The updated input allocation has two immediate implications for the

final output of the firms. On the one hand, firms gain efficiency from using more inputs

with higher marginal product and increase final output. On the other hand, firms substitute

inputs at their relative spot market prices, changing input combinations and marginal cost

of production. After sparsity increases, a particular firm may use inputs that are relatively

more (less) expensive, causing the marginal cost of production to increase (decrease) and

its final output to decrease (increase). Therefore, changes in the marginal cost may have

positive or negative effect on output depending both on the spot market prices and on the

specific changes in the network. The efficiency gain, however, always increases output. The

aggregate effect from an increase in sparsity on the output of the firm depends on which

effect dominates.

When concentration is kept constant, then changes in marginal cost due to different input

combinations aggregate to zero. This is because some firms use inputs that are relatively

more expensive and others use inputs that are relatively less expensive. Thus, aggregate out-

put and consumption increase when the sparsity factor increases. When sparsity increases,

the input-output linkages are rearranged, increasing aggregate consumption and decreasing

marginal utility. Innovations in network sparsity carry positive price of risk. Assets that

have high returns when network sparsity increases, i.e. asset with high sparsity-beta, are

risky assets and their expected returns should be higher to compensate the investor for this

risk. A portfolio that goes long high sparsity-beta stocks and short low sparsity-beta stocks

should have positive average returns.

In order to illustrate the difference between the two network factors, Figure 2 plots

1For the remainder of the paper, the words ‘firm’ and ‘sector’ are used interchangeably. In my model,
each sector features a representative firm.
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Figure 2: Changes in Network Sparsity and Network Concentration

These are are three simulated networks with 23 sectors. Panel (a) presents a network with low network sparsity factor and
low network concentration, panel (b) presents a network with low network concentration, but high network sparsity. Panel (c)
present a network with high sparsity and high concentration.

(a) Low Sparsity and
. Low Concentration

(b) High Sparsity and
. Low Concentration

(c) High Sparsity and
. High Concentration

three simulated networks with different network moments in panels (a), (b) and (c). The

network in panel (a) has uniform edges meaning that sectors’ input expenditures are evenly

distributed across inputs. Similarly, the nodes are of similar size meaning that output shares

are roughly the same. This network has low sparsity and low concentration factors. The

network in panel (b) has fewer edges, but thicker ones. Each sector has its input expenditure

concentrated on a few sectors. As a result, the network in panel (b) has higher sparsity than

the network in panel (a). Although the network in panel (b) is more sparse than in (a),

concentration is the same in both networks. The network in panel (c) presents an increase in

the concentration factor. The input expenditure of all other sectors is highly concentrated

on sector 1, which results in a higher output share for sector 1 and a lower share for the

other sectors in equilibrium. As a result, the network in (c) has a higher concentration factor

than (a) and (b). However, the edges of networks in panels (b) and (c) are just as scattered

and the degree of input specialization is the same, meaning that sparsity is the same in both

networks.

In addition to a time-varying network, the model features an aggregate productivity fac-

tor, a common feature of production-based models. However, in the model, this productivity

factor arises endogenously from aggregating sector-specific productivity shocks. The network

structure governs the extent to which these productivity shocks are diversifiable and how

they generate systematic risk. Therefore, the general equilibrium model boils down to a

three factor model: aggregate productivity, network concentration, and network sparsity.

These three factors fully determine the dynamics of aggregate output and consumption in
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equilibrium, and innovations in concentration and sparsity represent two new candidate asset

pricing factors I take to the data.

I test empirically whether high sparsity-beta assets have higher expected returns than

those with low sparsity-beta, and whether high concentration-beta assets have lower expected

returns than assets with low concentration-beta. The network factors are computed from

Compustat, and CRSP stocks are sorted into portfolios based on their exposures to the

innovations in the network factors. I sort portfolios and find that the high sparsity-beta

portfolio has higher returns than the low sparsity-beta portfolio with a return difference of

6% per year. Furthermore, the high concentration-beta portfolio has lower returns than the

low concentration-beta portfolio with a spread of 4% per year. These return spreads are

economically meaningful and statistically significant. Moreover, neither the CAPM nor the

Fama French three-factor model can explain these returns differences.

In addition to verifying beta-sorted portfolios return spreads, I show that factor-mimicking

portfolios for the network sparsity and concentration factors help price other sets of equity in

a Fama MacBeth analysis. Long-short sparsity-beta and long-short concentration-beta port-

folios help price portfolios sorted by book-to-market ratio, by industry, and by idiosyncratic

volatility level.

Finally, I investigate whether the empirical return spreads are quantitatively consistent

with my model. The model is calibrated to match the return betas estimated from the

data as well as other asset pricing moments, including the equity risk premium on the

market portfolio, the market return volatility, and the risk-free rate of return. Importantly,

the calibration respects the observed time series properties of the network factors. The

calibrated model is successful in terms of replicating the average excess return of the sorted

portfolios as well as their return volatility.

The rest of paper is organized as follows. The next section discusses the related literature.

Section 2 presents the model and discusses the network factors. Section 3 discusses the

empirical evidence, and Section 4 shows the calibrated model. Section 5 concludes.

Related Literature

The literature that applies network theory to macroeconomics and finance has mostly focused

on documenting stylized facts, and building micro foundation for business cycles, financial

contagion, and other macroeconomic phenomena.2 Asset pricing implications of sectoral

2There are several recent papers on networks and finance. The main contributions include Hou and
Robinson (2006), Ahern and Harford (2010). Cohen, Frazzini, and Malloy (2008), Cohen and Frazzini
(2008), Carvalho (2010), Acemoglu, Ozdaglar, and Tahbaz-Salehi (2013), Aobdia, Caskey, and Ozel (2013),
Babus (2013), Biggio and La’O (2013), Carvalho and Gabaix (2013), Carvalho and Grassi (2014), Carvalho
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linkages, however, have been largely neglected. This paper contributes to a recent but

growing literature that studies firms’ customer-supplier linkages and asset prices. I extend

this literature by providing new asset pricing factors constructed from the input-output

network.

Using input-output data, Ahern (2012) shows that industries occupying a more central

position in the network earn higher returns on average. Centrality of a particular industry

is a property of a node (sector) in the network as opposed to the property of the entire

network. In my model, sparsity and concentration factors are properties of the whole net-

work. Another related paper is Kelly, Lustig, and Van Nieuwerburgh (2013) who investigate

the relation between firm size distribution and firm-level volatility through the lens of a

customer-supplier network model. However, they do not investigate the asset pricing im-

plications of customer-supplier linkages. Herskovic, Kelly, Lustig, and Van Nieuwerburgh

(2014) document a common factor structure in the idiosyncratic firm-level return volatility

and show that the common idiosyncratic volatility factor is priced. Unlike these papers, my

model derives network factors from a general equilibrium model where these factors originate

from sectoral linkages and are source of systematic risk. An interesting question for future

research is what the connection is between my network factors and innovations in the firm

size dispersion.

This paper is also closely related to the literature that studies the importance of sectoral

shocks for economic aggregates. The multisector model developed in this paper is based on

Long and Plosser (1983). Their model generates comovement of sectors’ output, because

each sector relies on the output of other sectors as sources of inputs. My model, however,

does not have the same degree of comovement, because the production technology repre-

sented by the network changes over time and therefore the sectoral shares also change over

time. My model is also closely related to the work of Acemoglu, Carvalho, Ozdaglar, and

Tahbaz-Salehi (2012). They show that aggregate fluctuations can be generated from sectoral

idiosyncratic shocks when sectors are connected by input-output linkages.3 The network in

my model, however, changes over time, while theirs is static. Therefore, sparsity and con-

centration factors are absent in their analysis. Also, their paper focuses on the origins of

aggregate fluctuations, while I am interested in identifying priced sources of systematic risk

from changes in the network.4

and Voigtlander (2014), Carvalho (2014), Farboodi (2014), Malamud and Rostek (2014), Finally, Allen and
Babus (2008) present a detailed review of network models applied to finance.

3The idea of having aggregate shocks originate from idiosyncratic shock is also discussed by Jovanovic
(1987), Bak, Chen, Scheinkman, and Woodford (1993), and Gabaix (2011).

4Carvalho (2010) presents a dynamic version of the model in Acemoglu, Carvalho, Ozdaglar, and Tahbaz-
Salehi (2012), but the network itself is fixed over time.
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This paper also contributes to the production based asset pricing literature by providing

explicit asset pricing factors computed directly from the input-output network.5 The closest

papers in this literature are Papanikolaou (2011), who studies how investment shocks are

priced, and Loualiche (2012), who investigate aggregate entry cost as a priced risk factor.

Although my model has neither entry cost nor investment shocks; both concentration and

sparsity factors are related to changes in how much firms are producing in the aggregate.

Changes in the network reflect not only changes in the sectoral relations, but also changes in

investment opportunities. However, changes in the network factors are due to technological

rearrangements that reshape the input-output network, which is different from changes in

the cost producing new capital. This paper relates to a line of research that studies how

technological innovation is priced. Kung and Schmid (2011) study asset pricing in a general

equilibrium framework with endogenous technological growth. In my model, changes in spar-

sity and concentration can be interpreted as reflecting technological innovation and therefore

my network factors capture two distinct risk factors resulted from changes in technology.

This paper also sheds some light on the literature on network formation. Oberfield (2013)

develops an input-output network formation model. In his model, firms choose from whom

they buy their inputs and the network is endogenous.6 In my model, the network formation

is exogenous, and the network evolves stochastically over time. An interesting question for

future research is how my network factors behave in a endogenous network formation model.

2 Multisector Network Model

2.1 Setup

Time is discrete and indexed by t = 1, 2, . . .. There are n distinct goods and n sectors. Each

sector has one representative firm producing the good of that particular sector. For example,

firm i buys inputs from other sectors, and these inputs combined are transformed into the

final output of sector i. Firms buy inputs and produce at the same time, that is, firm i buys

5 Related work in production-based asset pricing includes Jermann (1998, 2010, 2013) Yogo (2006), van
Binsbergen (2007), Gomes, Kogan, and Yogo (2009), Kuehn (2009), Lochstoer (2009), Belo (2010), Gomes
and Schmid (2010), Kuehn and Schmid (2011), Kogan, Papanikolaou, and Stoffman (2013).

6One interesting result is the existence of “star suppliers,” i.e. suppliers who are simultaneously used
by many other firms, as an endogenous outcome of his model. There is a recent set of studies in which
endogenous network formation results in a network with a core-periphery structure when agents choose their
connections unilaterally (Bala and Goyal 2000, Galeotti and Goyal 2010). Herskovic and Ramos (2014)
show that, under general conditions, a hierarchical network structure emerges endogenously in a network
formation game.
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inputs from other sectors at period t and produces at period period t as well.7 The model

also features a representative household with Epstein-Zin recursive preference that owns all

firms and lives off their dividends. Next, I describe the problem of the firms and how they

connect to each other through input-output linkages. Then, I present the representative

household problem as well as all market clearing conditions.

Firms Let’s consider the maximization problem of firm i, and let the input bought from

firm j at period t be denoted by yij,t. All inputs acquired from other firms are combined and

transformed into a single investment variable given by

Ii,t =

[
n∑
j=1

wij,ty
1−1/ν
ij,t

] 1
1−1/ν

, (1)

where ν is the elasticity of substitution between inputs and wij,t the weight on, or the

importance of, input j. The weights wij,t are non-negative and sum to one, that is,

wij,t ≥ 0 and
n∑
j=1

wij,t = 1.

The investment variable Ii,t is further transformed into the final output of sector i ac-

cording to

Yi,t = εi,tI
η
i,t, (2)

where η < 1 captures decreasing returns to input investments, and εi,t represents sector-

specific productivity level.8

Although firms maximize all future discounted dividends, their optimization problem is

time-separable, and it is sufficient to maximize per-period profits. Firm i chooses how much

to investment and which inputs to acquire in order to maximize profits, taking both the spot

market prices and the input weights as given:

Di,t = max
{yij,t}j ,Ii,t

Pi,tYi,t −
n∑
j=1

Pj,tyij,t

7The production side is based on Long and Plosser (1983), but the time dimension is collapsed: firms buy
inputs and produce at the same time. Same modeling approach is used by Acemoglu, Carvalho, Ozdaglar,
and Tahbaz-Salehi (2012).

8The decreasing returns to scale is interpreted as return to scale to capital, Ii,t, and each sector faces an
inelastic labor (or land) supply, Li,t = 1 for every i and t. Thus, the output function could be stated as

Yi,t = εi,tI
η
i,tL

1−η
i,t = εi,tI

η
i,t1

1−η. Under this interpretation, the profit of the firms are exactly equal to the
wage (rent) payment to the representative household who owns the entire labor (land) supply.
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subject to equations 1 and 2, where Pi,t is the spot market price of good i.

The cum-dividend value of firm i, denoted by Vi,t, is defined recursively by

Vi,t = Di,t + Et [Mt+1Vi,t+1] ,

where Mt+1 is the stochastic discount factor that prices all assets in the economy.

Network The network consists of all weights wij,t, which are taken as given by the firms

max maximizing profits. Formally, the network is characterized by the following n×n matrix:

Wt ≡


w11,t . . . w1n,t

...
. . .

...

wn1,t . . . wnn,t

 .

The network represents how firms’ production is interconnected. It informs how much

a firm my influence or be influenced by other firms. Furthermore, the network defines the

production technology through equation 1. When ν = 1, the investment equation 1 becomes

a Cobb-Douglas function, and a network weight wij,t becomes the elasticity of the investment

of sector i with respect to input j. Therefore, wij,t is informative about the responsiveness of

output i regarding changes in the amount of input j used. The network and the productivity

shocks evolve over time according to an stochastic process known to all agents.

Representative household The representative household has Epstein-Zin recursive ref-

erences with respect to a consumption aggregator:

Ut =

[
(1− β) C1−ρ

t + β
(
Et
(
U1−γ
t+1

)) 1−ρ
1−γ

] 1
1−ρ

, (3)

where γ is risk aversion, ρ is the inverse of the elasticity of intertemporal substitution and

Ct is a consumption aggregator.

The consumption aggregator is Cobb-Douglas and given by

Ct =
n∏
i=1

cαii,t,

where ci,t is the consumption of good i at period period t, and αi is the preference weight on

good i. The preferences weights are assumed to be constant over time and they sum to one.
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The household budget constraint is given by

n∑
i=1

Pi,tci,t +
n∑
i=1

(Vi,t −Di,t)ϕi,t+1 =
n∑
i=1

Vi,tϕi,t, (4)

where Vi,t is the cum-dividend value of firm i at period t, ϕi,t is the ownership of firm i at

period t, and Di,t is the dividend paid at period t by firm i. In the budget constraint, total

expenditure in consumption goods and firms’ shares net of dividends (left-hand side) must

equal shares’ value (right-hand side).

In each period, the representative agent chooses how much to consume of each good,

{ci,t}i, and next period firms’ ownership, {ϕi,t+1}i in order to maximize the recursive utility

given by equation 3. The household cannot store goods from one period to another and

therefore cannot save. One could assume that there is a risk-free asset in zero net supply,

but in equilibrium the household has to have a zero net position to satisfy clearing conditions,

which wouldn’t change his consumption allocation rule.

The household problem may be stated as:

Jt (Pt, ϕt, Qt, ht) = max
{ci,tϕi,t+1}i

[
(1− β) C1−ρ

t + β
(
Et
(
J1−γ
t+1

)) 1−ρ
1−γ

] 1
1−ρ

subject to equation 4.

Market clearing There are two sets of market clearing conditions. First, all good markets

clear,

ci,t +
n∑
j=1

yji,t = Yi,t ∀ i, t, (5)

where ci,t is the household consumption of good i,
∑n

j=1 yji,t is the total demand for good i

as source of input in the economy, and Yi,t is the total supply of good i.

Second, all asset markets clear,

ϕi,t = 1 ∀ i, t, (6)

and the household owns all firms. The household is a representative shareholder as well.

2.2 Competitive equilibrium

Definition. A competitive equilibrium consists of spot market prices (P1,t, · · · , Pn,t), con-

sumption bundle (c1,t, · · · , cn,t), shares holdings (ϕ1,t, · · · , ϕn,t) and inputs bundles (yij,t)ij
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such that, for every period t, (i) household and firms optimize, taking the network and spot

market prices as given, and (ii) market clearing conditions 5 and 6 hold.

In order to solve the multisector model for the competitive equilibrium, we have to define

the agents’ optimality conditions. On the production side, the first order conditions of firm

i are given by

yij,t = µνi,t
wνijIi,t

P ν
j,t

, (7)

Ii,t =

(
ηPi,tεi,t
µi,t

) 1
1−η

, (8)

µi,t =

[
n∑
j=1

wνijP
1−ν
j,t

] 1
1−ν

, (9)

where µi,t is a network-weighted average of spot market prices and is the shadow price of

investment – µi,t is the Lagrange multiplier on the Ii,t constraint 1. Equation 7 specifies the

optimal input allocation for a given investment and equation 8 pins down the investment

level itself. Detailed derivations are provided in Appendix A.

For the household, the intra-period consumption rule is given by

ci,t = αi

∑n
j=1Dj,t

Pi,t
, (10)

which is a direct implication of the Cobb-Douglas consumption aggregator which implies

that the household spends a share αi of her income on good i. The first order condition for

the inter-temporal consumption allocation problem yields

Et

β
(
Ct+1

Ct

)−ρ ∂Ct+1

∂c1,t+1
/P1,t+1

∂Ct
∂c1,t

/P1,t

 Jt+1

Et
(
J1−γ
t+1

) 1
1−γ

ρ−γ

︸ ︷︷ ︸
≡Mt+1

Vi,t+1

Vi,t −Di,t︸ ︷︷ ︸
≡Ri,t+1

 = 1. (11)

This is the Epstein-Zin first order condition for investing in firm i, where Mt+1 is the

stochastic discount factor and Ri,t+1 is the one-period return of holding firm i’s share from

t to t+ 1. The household choose assets’ holdings, {ϕi,t+1}i, such that equation 11 holds for

every asset i.
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Therefore, the competitive equilibrium is fully determined by the optimally conditions of

the firms (equations 7, 8 and 9), the household first order conditions (equations 10 and 11),

and all market clearing conditions (equations 5 and 6). In addition, spot market prices may

be normalized.

When spot market prices satisfy

n∏
j=1

P
αj
j,t =

n∏
j=1

α
αj
j ∀t, (12)

the consumption aggregator becomes the numeraire of the economy, and the utility aggre-

gator equals the household consumption expenditure, Ct =
∑n

i=1 Pi,tci,t.
9 The price normal-

ization is not only useful to interpret the numeraire of the economy, but also to simplify

the pricing kernel of the assets. Under this price normalization, the marginal aggregator

term in the stochastic discount factor equals 1, that is, 1
P1,t

∂Ct/∂c1,t = 1 for every t. Thus,

the normalization considerably simplifies the expression for the stochastic discount factor.

Lemma 1 shows that it may be written in terms of the consumption expenditure growth

and the return on total wealth. This is a standard result of Epstein-Zin preferences with

a slight generalization for a consumption aggregator whenever homogeneous of degree one.

The detailed proof of the lemma is provided in Appendix C.

Lemma 1. If the consumption aggregator is homogeneous of degree one, then the SDF can

be written as

Mt+1 = βθ

(
1

P1,t+1
∂Ct+1/∂c1,t+1

1
P1,t

∂Ct/∂c1,t

)1−γ (
ωt+1

ωt

)−ρθ (
RWt+1

)θ−1

where RWt+1 = Wt+1

Wt−ωt is return on total wealth, ωt =
∑n

i=1 Pi,tci,t is period t total expenditure on

consumption goods, and θ = 1−γ
1−ρ . Furthermore, when the price normalization from equation

12 holds, then

Mt+1 = βθ
(
Ct+1

Ct

)−ρθ (
RWt+1

)θ−1
. (13)

2.3 Closed-form expressions

In this section, I develop closed-form expressions for output shares and consumption expen-

diture growth.10

9See Appendix B for detailed discussion and derivation.
10The detailed derivations are in Appendix D.
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Output shares The solution to the system of market clearing conditions 5 determines

equilibrium output shares as a function of the network and preferences parameters alone,

whenever the elasticity of substitution between inputs, ν, equals one.

When ν 6= 1, the equilibrium output shares are given by

δt = (1− η)
[
I− ηW̃ ′

t

]−1

α,

where δt = (δ1,t, . . . , δn,t)
′ is a n × 1 vector of output shares, W̃ ′

t is a n × n matrix with

(i, j) entry given by w̃ij,t =
wνij,tP

1−ν
j,t∑

s w
ν
isP

1−ν
s

, and α = (α1, . . . , αn)′ is a n× 1 vector of preference

weights.11

When ν = 1, we have that w̃ij,t = wij,t, and the output shares is completely determined

by the network and household preferences. In fact, for the Cobb-Douglas case, the output

shares are equal to the network centrality of the firm, a measure developed by Katz (1953).

The Katz centrality quantifies the relative importance of each node in a network, that is,

the relative importance of each firm to the aggregate economy. Furthermore, this measure

captures indirect effects that each sector has on each other,

δt = (1− η) [I− ηW ′
t ]
−1
α = (1− η)

[
I + ηW ′

t + η2W
′2
t + η3W

′3
t + . . .

]
α, (14)

where the return to scale parameter is the decaying rate of these feedback effects.

The output share of firm j may be defined recursively and decomposed in two parts, a

preference component and a network component:

δj,t = (1− η)αj︸ ︷︷ ︸
preference component

+ η
n∑
i=1

wij,tδi,t︸ ︷︷ ︸
network component

The preference component represents the household demand for goods from sector j directly,

and the network component captures the demand for good j when used as input. The specific

contribution of sector i to j’s output share depends on sector i own share, δi,t, and on the

network weight connecting both sectors, wij,t.

We may iterate the recursive expression of output shares in order to obtain an represen-

11The output share derivation is similar to the one in Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi
(2012). My derivation, however, is for a general CES production function and for a consumption aggregator
with different preference weights.
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tation capturing all indirect effects along the network linkages:

δj,t = (1− η)αj︸ ︷︷ ︸
preference component

+ η

[
n∑
i=1

αiwij,t + η

n∑
i=1

n∑
k=1

αiwik,twkj,t + η2
n∑
i=1

n∑
k=1

n∑
s=1

αiwik,twks,tws,j,t + . . .

]
︸ ︷︷ ︸

network component

.

The first term of the network component captures the importance of firm j to its im-

mediate customers, firms directly connected to j. The second term captures the indirect

importance of j through firms that buy inputs from j own customers, that is to say, the

customers of the costumers of firm j. The third term captures the importance of j through

customers that are even further away, two customers away from j to be precise. All these

indirect effects decay at the rate given by the returns to scale η. As firms increase produc-

tion the marginal product decreases and the demand of a particular customer has a decaying

effect along the production chain.

Consumption growth The stochastic discount factor, however, depends on changes in

the log consumption aggregator, log
(
Ct+1

Ct

)
, according to lemma 1. Changes in the log

consumption aggregator are identical to changes in the log aggragate output:

log

(
Ct+1

Ct

)
= log

(
zt+1

zt

)
,

where zt =
∑n

i=1 Pi,tYi,t is aggregate output. The above equality holds because the consump-

tion aggregator is proportional to the the aggregate output:

Ct =
∑
j

Pi,tci,t =
∑
j

Dj,t = (1− η)
∑
j

Pj,tYj,t = (1− η)zt.

The first equality holds as the consumption aggregator equals consumption expenditure when

price normalization 12 is satisfied. The second equality comes from the budget constraint and

the clearing conditions combined. The third one is based on the firms’ optimality conditions,

and the last uses the aggregate output definition.

The aggregate output is part of the solution of all market clearing conditions and agents’

first order condition. The household consumption has already been solved in closed form by

equation 10, and the output shares given by expression 14 satisfy the market the clearing

conditions 5. To solve the model for the aggregate output, we have to solve firms’ optimality

14



conditions. Their first order conditions may be simplified to

(δi,tzt)
1−η = µ−ηi,t Pi,tεi,tη

η ∀ i, t, (15)

which along with price normalization in equation 12 are sufficient to pin down the equilibrium

spot market prices and output. Therefore, equations 12 and 15 combined result in a system of

n+1 equations and n+1 unknowns for every period t that fully characterizes the equilibrium

solution of the model. The following result shows that, under the Cobb-Douglas case, i.e.

ν = 1, this system of equation may be solve analytically.12

Theorem. When ν = 1, the equilibrium consumption expenditure growth is given by:

log Ct+1 − log Ct =
1

1− η
[
η∆N St+1 − (1− η)∆N Ct+1 + ∆et+1

]
(16)

where ∆N St+1 = N St+1 −N St , ∆N Ct+1 = N Ct+1 −N Ct , ∆et+1 = et+1 − et, and

N St =
∑
i

δi,t
∑
j

wij,t logwij,t,

N Ct =
∑
i

δi,t log δi,t,

et =
∑
i

δi,t log εi,t.

This is the main result of the general equilibrium model. Equation 16 shows that the

consumption expenditure growth rate may be decomposed into three distinct factors: in-

novations in network sparsity (∆N St+1), network concentration (∆N Ct+1), and residual TFP

(∆et+1). According to equation 16, changes in sparsity and residual TFP increase consump-

tion and output growth, while changes in concentration have the opposite effect. In the next

section, the relation between these factors and consumption growth is discussed in details.

12Atalay (2014) estimate the elasticity of substitution between inputs finding that the elasticity of sub-
stitution between inputs should be less than one (their point estimate is 0.034) when these inputs are not
used to accumulate capital, however the elasticity of substitution between inputs used to investment and
build capital should be greater than 1 (2.87). This means that firms’ input are more substitutable when
they are used to building capital than when they are used as raw materials. In my model, there is no capital
accumulation, firms buy inputs from each other and these input are immediately transformed into effective
investment or capital (Ii,t) which is then used to produce the final output. Thus, neither of the two elastici-
ties estimated by Atalay (2014) fully represent the elasticity parameter ν, intuitively ν should be somewhat
between both estimates. In the appendix D, I solve a first-order approximation of the model around ν = 1.
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2.4 Network Factors

Residual TFP Firms’ productivity is combined into one aggregate variable given by

et ≡
n∑
i=1

δi,t log εi,t,

which is a weighted average of sector-specific productivities and the weights are given by

firms’ output share.

Since, the model doesn’t have labor market nor capital accumulation, output growth is

net of capital and labor utilization, which is exactly what econometricians estimate as TFP

in the data. Therefore, the residual TFP, et, is TFP net of network factors. Innovations in

the residual TFP, ∆et+1, positively affects consumption growth, because firms become more

productive on average.

Network Concentration The network concentration factor is given by

N Ct ≡
n∑
i=1

δi,t log δi,t.

This is the average of firms’ log output share weighted by their own output share. This

factor is exactly the negative entropy of the output share distribution and captures output

share concentration. In equilibrium, sectoral shares depend primarily on the input-output

network and the dynamics of concentration depends only on the input-output network dy-

namics. As discussed earlier, the output shares in equilibrium are equal to firms’ centrality

in the network; and, therefore, the network concentration factor measures the concentration

of nodes’ centrality which is equivalent to the concentration over the size of network nodes.

From equation 16, changes in concentration negatively affect consumption growth. An

economy with high concentration has few large sectors with lower return to input investment

due to decreasing returns to scale. These large sectors’ lower productivity spreads across

sectors through equilibrium prices, and, as a result, aggregate consumption and output

decrease. Thus, high concentration leads to lower aggregate consumption.

Network Sparsity The network sparsity factor is given by

N St ≡
n∑
i=1

δi,t

n∑
j=1

wijt logwij,t︸ ︷︷ ︸
≡NSi,t

.
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Sparsity measures how thick and scarce network linkages are. Similar to the concentration

factor, the term N Si,t =
∑n

j=1wijt logwij,t measures the concentration of {wij,t}j, that is, the

concentration of row i of the network:

Wt ≡


w11,t . . . w1n,t

...
. . .

...

wn1,t . . . wnn,t

 .

Sparsity is the average, weighted by sectoral shares, of the concentration over input

expenditures. High network sparsity factor implies that the input shares are concentrated

and the network is sparse. Graphically, a network with low sparsity is represented by the

network in panel (a) of Figure 2, while a network with high network sparsity are represented

by the network in panels (b) and (c) of the same Figure.

When holding both the residual TFP and the concentration factors fixed, changes in

sparsity positively affect consumption growth based on equation 16. The intuition behind

these results is explained in three steps. First, I discuss the implications of changes in sparsity

for firms’ production function. Second, I discuss how the firms’ optimality conditions change,

and, third, I show that sparsity increases consumption growth when concentration is kept

constant.

First, let’s consider the effects of changes in sparsity on firms’ production function. Firm

i’s output results from a combination of inputs acquired from other sectors, specifically its

output is given by Yi,t = εi,tI
η
i,t, where Ii,t =

∏n
j=1 y

wij,t
ij,t is i’s investment and yij,t is the input

from sector j (see equations 1 and 2 when ν = 1). When sparsity increases, the shape of the

investment function changes and the network weights become more concentrated, affecting

the marginal product of each input. Hence, input allocations may become more or less

productive, depending on specific changes in the network.

Figure 3 plots 2 different isoquants when there are only two inputs and sparsity increases.

For firm 1, the weight on input 1 decreases from 0.5 to 0.1, and its isoquant pivots clockwise

(left panel). For firm 2, the weight on input 1 increases from 0.5 to 0.9, and its isoquant

pivots counter-clockwise (right panel). The isoquant pivots at the 45o degree line and the

firm becomes more productive if it uses more inputs from the sector whose weight was

increased: firm 1 is more productive in the area above the 45o degree line and firm 2 is more

productive in the area below the line. To provide further intuition why this is the case, let’s

consider firm 1. When the weight on input 1 decreased from 0.5 to 0.1, the weight on input

2 increased from 0.5 to 0.9, and, as a result, firm 1 becomes better at coverting input 2 into

final output. If firm 1 has more of input 2, then it’s able to produce more after the increase
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Figure 3: Sparsity and Isoquants

This Figure plots output isoquants for 2 goods, i.e. Ii = y
wi,1

1 y
wi,2

2 , and 2 different sparsity levels: low sparsity (solid line) and
high sparsity (dashed line). The Figure also plots a 45o degree line as well as an isocost with slope of −1.
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in sparsity, that is, all input combinations above the 45o degree line result in a higher final

output for firm 1. For a given input allocation of firm i, a higher weight wij,t increases

the marginal product of input j. Thus, more concentrated weights, {wij,t}j, increase the

final output if firm i has more inputs from sectors whose weights were increased. Therefore,

changes in sparsity affect the productivity of the firms depending on their input allocations.

The second step to understand why sparsity increases consumption is to understand how

sparsity affects firms’ optimality conditions. As a result of profit maximization, firms spend

less on inputs from sectors whose network weights were decreased and more on inputs from

sectors whose weights were increased. In the example, firm 1 spends less on input 1 and

more on input 2, and firm 2 spends more on input 1 and less on input 2. Thus, an increase

in firm i sparsity makes firms’ input allocation to head towards a more productive input

allocation. If firm i becomes more or less productive depends both on the change in sparsity

and on the spot market prices, because firms substitute inputs at the relative spot market

prices.

Solving firm i’s first order condition for the total output yields

Pi,tYi,t =
ε

1
1−η
i,t η

η
1−ηP

1
1−η
i,t(∏

P
wij,t
j,t

) η
1−η

exp

{
η

1− η
N Si,t
}
. (17)

Therefore, changes in the network weights {wij,t} towards more concentrated input shares
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has two immediate effects. On the one hand, it increases total output as it directly increases

the last term in expression 17. The intuition behind this effect is that firm i substitutes

inputs towards a more productive input allocation. This is the same intuition of firm 1 using

more good 2 as input and being above the 45o degree line (Figure 3, left panel).

On the other hand, firms substitute inputs at their relative spot market prices, and

changes in input combination affects the marginal cost of production. After sparsity in-

creases, a particular firm may use inputs that are relatively more (less) expensive, causing

marginal cost of production to increase (decrease) and final output to decrease (increase).

Therefore, changes in marginal cost may have a positive or negative effect on output of the

firms, depending both on the spot market prices and on the specific changes in the network.

This is captured by changes in the denominator term
∏
P
wij,t
j,t in equation 17. The aggregate

effect on the output of the firms depends on which effect dominates.

The third step to understand why sparsity increases consumption is to consider the

aggregate effect when we keep concentration constant. When concentration is kept constant,

the cost effect is averaged out to zero and it has no aggregate effect in equilibrium. The

intuition may be obtained through a partial equilibrium exercise in which sparsity factor

increases, but sectors’ shares and productivity are kept constant. Changes in the final

output can be approximated by

log zt+1 − log zt ≈
n∑
i=1

δi,t [log(Pi,t+1Yi,t+1)− log(Pi,t+1Yi,t+1)] .

Using the above approximation, we may substitute in the final output of each firm from

equation 17. Moreover, keeping both prices and output shares constant, the total output

growth may be approximated by

log zt+1 − log zt ≈
η

1− η

(
n∑
i=1

δi,t+1N Si,t+1 −
n∑
i=1

δi,tN Si,t

)
+

η

1− η

 n∑
i=1

δi,t

n∑
j=1

(wij,t+1 − wij,t) logPj,t



=
η

1− η
(
N St+1 −N St

)
+

η

1− η


n∑
j=1

logPj,t

n∑
i=1

δi,t(wij,t+1 − wij,t)︸ ︷︷ ︸
=0


=

η

1− η
(
N St+1 −N St

)
In the second line, the term

∑n
i=1 δi,t(wij,t+1 −wij,t) is zero based on the market clearing
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conditions and on the assumption that output shares are constant.13 This means that the

cost effect is averaged out to zero. Some firms use more inputs that are relatively more

expensive, while others use more inputs that are relatively less expensive, but the aggregate

effect is zero.

At the macro level, the efficiency effect dominates the cost effect and aggregate out-

put increases as sparsity increases. Thus, when sparsity is high, the input-output linkages

change causing aggregate consumption to increase, and changes in sparsity positively affects

consumption growth as described by equation 16.

2.5 Examples

Concentration and sparsity represents distinct attributes of a network. In this section, I

provide an example of networks with the same concentration, but different sparsity level, and

another example in which concentration varies while keeping sparsity constant. In addition,

one may ask whether it is possible to recover the entire network based on concentration and

sparsity alone. I show this is not possible, by discussing a third example of two distinct

networks that have exactly the same network factors.

Example I: change in network sparsity. Let’s consider an example of an economy with

2 sectors. To keep the example simple, let’s assume that the household weights on each good

is the same.

Let’s consider two distinct networks. In the first one, all entries in the network are equal:

W1 =

(
0.5 0.5

0.5 0.5

)
.

In this case, the network is completely symmetric and both sectors have the same output

share in equilibrium: δNetwork 1
1 = δNetwork 1

2 = 0.50. Furthermore, concentration and sparsity

are both −0.69. This is represented graphically in panel (a) of Figure 4.

In the second network, sector 1 spends 90% of its input investments on inputs from sector

2 and only 10% on inputs from sector 1, and sector 2 does exactly the opposite:

W2 =

(
0.1 0.9

0.9 0.1

)
.

Sector 1 isoquant pivots counter-clockwise while sector 2 isoquants pivots clockwise (see

13This is an immediate implication of the equilibrium output shares defined in equation 14.
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Figure 4: Network Factors and Network Representation

This picture contains the representation of 3 different networks:

W1 =

(
0.5 0.5
0.5 0.5

)
, W2 =

(
0.1 0.9
0.9 0.1

)
, and W3 =

(
0.9 0.1
0.9 0.1

)
.

The edge arrow represents the input flow and its width represents the network weight. Networks 1 and 2 have the same
concentration factor, but different sparsity factor with network 2 being more sparse than network 1. Networks 2 and 3 have
the sparsity, but different concentration factors – network 3 is more concentrated.

(a) Network 1 (b) Network 2 (c) Network 3

Figure 3). In equilibrium, sector 2 chooses input combination below the 45o degree line and

is to produce more output. Similarly, sector 1 input combination is above the 45o degree line

and is able to produce more output as well. Moreover, the network is symmetric and output

shares are the same: δNetwork 2
1 = δNetwork 2

2 = 0.50, which results in a concentration factor of

−0.69, same as in the first network. However, there is more input concentration and network

sparsity is −0.33. This means that on average firms are more productive through an increase

in sparsity without affecting concentration.

Example II: change in network concentration. Keeping the structure of example 1,

let’s consider a third network similar to network 2, but firm 1 will have the same network

weights as firm 2:

W3 =

(
0.9 0.1

0.9 0.1

)
.

This network is represented by panel (c) in Figure 4. In this case, both sectors are using

less inputs from sector 2 and more inputs from sector 1. Sectors 1 and 2 spend 90% of their

input investment in goods from sector 1 and only 10% in goods from sector 2. As a result,

sector 1 is larger than sector 2: δNetwork 3
1 = 0.66 and δNetwork 3

2 = 0.34. In the Figure, sectoral

shares are represented by nodes’ size. Network concentration is −0.64, which is greater than

the concentration of both first and second networks, but sparsity factor is the same of the

second network at −0.33. Both sectors rely more on sector 1, and, in equilibrium, sector 1
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Figure 5: Different Networks with same Factors

This Figure plots two distinct network that have the same network factors. The two networks are given by

W4 =

 0.4 0.4 0.2
0.4 0.4 0.2
0.4 0.4 0.2

 , and W5 =

 0.48 0.26 0.26
0.48 0.26 0.26
0.48 0.26 0.26

 .

(a) Network 4 (b) Network 5

is twice as large as sector 2. As a result, sector 1 has lower return to capital (investment)

decreasing aggregate consumption in equilibrium.

Example III: same network factors, but different networks. Finally, given the two

network factors, it’s not possible to recover the entire network. Figure 5 shows two distinct

networks that have the same network factors. In the fourth network, sectors 1 and 2 are

the largest ones with output share of 0.4 each, the network concentration factor is -1.09,

and network sparsity factor is -1.05. In the fifth network, sector 1 is the largest sector with

0.48 output share and sectors 2 and 3 split the remaining output share, 0.26 each. Although

network 5 is different from network 4, they have the same network factors.

3 Evidence from the data

The multisector network model predicts that consumption growth depends positively on

sparsity and negatively on concentration (equation 16).14 A positive shock to sparsity is

associated with higher consumption and lower marginal utility, while a positive shock to

14 Changes in the network factors are correlated with consumption growth of the share holder in a lower
frequency. Using shareholder consumption data from Annette Vissing-Jørgensen’s website and regressing
consumption growth on my network factors, I show that sparsity is associated with higher consumption
growth and concentration with lower growth rates, over the next three to five years. (Malloy, Moskowitz,
and Vissing-Jørgensen 2009)
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concentration is associated with lower consumption and higher marginal utility. Therefore,

the model has a clear-cut prediction regarding how innovations in the network factors should

be priced: innovations in sparsity carry a positive price of risk and innovations in concen-

tration carry a negative price of risk. In this section, I verify this prediction of the model

by building sorted portfolios based on stocks’ exposure to the innovations in the network

factors. In addition, I construct factor-mimicking portfolio to verify, by estimating prices

of risk, that concentration and sparsity are also priced in other portfolios such as industry,

book to market, 25 Fama French, earnings price and volatility sorted portfolios.

3.1 Data

Network data The concentration factor may be computed directly from sectors’ output

shares, but sparsity requires the entire input-output network matrix. The main input-output

data sources are the BEA Input-Output tables, however this data set is available on an annual

basis only from 1997 to 2012. Due to the short BEA sample, I use an alternative data set to

compute an estimate of the Input-Output table using the compustat segment customer data

which is available from 1979 to 2013. If a customer represents more than 10% of the sellers’

revenue, then the customer’s name is reported in the compustat customer segment data as

well as the sales amount to that particular customer.15 Combing this information with the

total sales available in compustat, it’s possible to reconstruct the network for each year and

computed a time series for the network factors.16 Firms are aggregated at the sector level

(2-digit naics), and the detailed construction of the data is provided in Appendix F.

The two network factors are plotted in Figure 6. The correlation between the two in

level is −34% (p-value of 0.04). The factors’ innovations are computed as the difference

from one year to another, and the correlation between the innovations is 6% (p-value of

0.72). This suggests that factors’ innovations are not correlated with each other, which

means that innovations in sparsity and concentration represent two distinct sources of risk.

Table 1 reports mean, standard deviation, and autocorrelation of the network factor, both

in level and innovations. The factors are autocorrelated in levels, but not in the innovations.

Return data I consider all CRSP stocks with share codes 10, 11 and 12. Penny stocks

are removed from the sample and delisting returns are taken into account. I also restrict

the sample to stocks with network data in order to keep the network data consistent with

15Regulation SFAS No. 14 and SFAS No. 131.
16Cohen and Frazzini (2008) located the CRSP permanent number, PERMNO, of the customer until the

year of 2009. I updated their data set by locating the customer identification number up to 2013.
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Figure 6: Network Factors

This Figure plots the time series of concentration (solid line) and sparsity (dashed line) computed from Compustat. The first
panel plots both factors in level, and the second one plots the innovations (one period difference).
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the return data. The annual risk-free rate and the annual market return are both from Ken

French’s website.

3.2 Sorted Portfolios and Trading Strategy

In order to verify the positive price of risk for sparsity innovations and negative price of risk

for concentration innovations, I sort stocks based on their exposure to these innovations and

form portfolios by terciles in a trailing window.

For every stock i, we can regress its excess return on a constant and on the innovation

in the network factors controlling for changes in the residual TFP as well as network factors

in level from the previous period:17

rit = αi + βiNS∆N St + βiNC∆N
C
t + Controls+ ξit, (18)

17 Changes in the residual TFP factor, i.e. ∆et+1, are computed as the residual of regressing TFP growth
on factor’s innovations The TFP used is from the San Francisco FED (Fernald and Matoba 2009, Fernald
2012, Basu, Fernald, and Kimball 2006). The controls used in the benchmark estimation are not crucial for
the sorted portfolio results as discussed in the robustness section 3.3.
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Table 1: Network Factors Statistics

This Table reports statistics for the network factor in level and changes (Innov.). AC(j) stands for the jth auto correlation.

Sparsity concentration
Level Innov. Level Innov.

Mean −3.10 −0.00 −1.83 −0.02
Standard Deviation 0.0360 0.0277 0.1817 0.0757
AC(1) 0.67 −0.09 0.91 −0.07
AC(2) 0.25 0.02 0.82 −0.20
AC(3) 0.09 −0.12 0.77 −0.06
AC(4) 0.04 0.14 0.73 −0.01
AC(5) 0.08 0.08 0.70 0.06

where coefficients βiNS and βiNC measure the exposure of stock i to factors’ innovations.

If sparsity carries a positive price of risk, then stocks with high sparsity-beta, i.e. high

βiNS , are risky assets and should have higher expected returns. Similarly, high concentration-

beta stocks should have lower expected return. For every year t, I compute stocks’ exposure

to innovations in the network factors from regression 18 over a 15-year year window from

t − 14 to t. Then, stocks are sorted based on each beta separately (one-way sort). Given

that stocks are properly sorted, valued-weighted portfolios are formed over the subsequent

year (t+ 1). This procedure repeats as a trailing window until the last year of the sample.

The average returns of the one-way sorted portfolios are reported in Table 2 as well as

return volatilities, post-sample CAPM and Fama-French alphas and other portfolio charac-

teristics. Panel A reports these moments when portfolios are sorted based on stocks’ exposure

to network sparsity innovations. The high sparsity-beta portfolio earned 6.01% higher re-

turn than the low sparsity-beta portfolio. which is consistent with a positive price of risk for

sparsity innovations. Panel B reports portfolios sorted by their exposure to concentration

innovations, the return spread is −4.04% and statistically significant. Moreover, the spread

sign is consistent with a negative price of price as predicted by the model. Interestingly,

neither return gaps can be explained by the CAPM or the Fama French three-factor model.

The second and third rows of each panel report the post-sample alphas and the alpha spread

is statistically significant. This suggests that innovations in the network factors represent a

source of risk that is not captured by the market return (CAPM) or by the Fama French

factors. For each trailing window, we can compute the correlation between the sparsity and

concentration betas estimated from regression 18. The average correlation is −14%, which

means that betas are not very correlated and the two factors represent distinct sources of

risk.
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Table 2: One Way Sorted Portfolios

Panel A: Sparsity
(1) (2) (3) (3)-(1) t-stat

Avg. Exc. Returns (%) 5.24 8.61 11.25 6.01 2.26
αCAPM −3.15 2.29 4.78 7.92 3.11
αFF −3.21 1.47 3.84 7.04 2.91
Volatility (%) 17.60 13.78 15.13 11.60 –
Book/Market 0.76 0.67 0.70 – –
Avg. Market Value ($bn) 1.53 2.18 1.23

Panel B: Concentration
(1) (2) (3) (3)-(1) t-stat

Avg. Exc. Returns (%) 10.23 8.51 6.19 −4.04 −2.19
αCAPM 2.62 2.43 −1.60 −4.21 −2.26
αFF 2.00 1.64 −2.00 −4.01 −2.12
Volatility (%) 16.18 13.60 16.27 8.05 –
Book/Market 0.74 0.69 0.70 – –
Avg. Market Value ($bn) 0.91 2.03 2.00

The sorted portfolios are roughly similar to each other. The first tercile for both sparsity-

beta and concentration-beta sorted portfolios have slightly higher book to market ratio (0.76

and 0.74) than the other two terciles (roughly 0.7 each). The average market value of stocks

is reported in the last row of each panel.

Altogether, there is compelling evidence that innovations in concentration and sparsity

factors constitute priced sources of risk. Moreover, the two factors represent distinct sources

of risk that cannot be explained by standard asset pricing model such the CAPM or the

Fama French three-factor model.

Market betas For the market portfolio, we can compute the factor betas from regression

18 using the market return instead of individual stock returns. The market sparsity beta is

estimated at 0.40 and the market concentration beta at −0.08. The betas are not significant,

but their signs are consistent with the model. If aggregate consumption growth depends pos-

itively on sparsity innovations, then the market sparsity-beta should be positive. Similarly,

the market concentration-beta should be negative.

3.3 Robustness

My results are robust to different specifications of my estimation procedure. I build double-

sorted portfolios based on both network factors, remove network factors in level from the
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control variables, change the CRSP sample considered, change the residual TFP calculations,

and change the trailing window length up to 20 years. In addition, I double sort stocks on my

network factors and on other risk factors and stock characteristics documents by the asset

pricing literature, including market value, book to market ratio, total and idiosyncratic

volatility, volume and turnover. Tables 6, 7, 8, 9 and 10 have robustness estimations and

are reported in appendix F.

Double sort In this robustness exercise, I sort stocks on both factors simultaneously and

build double-sorted portfolios. Table 6 reports returns, and CAPM as well as Fama French

alphas for the double sorted portfolios. The return spread on sparsity-beta sorted portfolios is

11.26% per year among stocks with high concentration betas, however for lower concentration

betas the return spread is lower and not significant. The return on the concentration-beta

sorted portfolio loses significance for all sparsity betas terciles. Thus, the sparsity factor

seems to survive double sorting.

Exposure estimation I consider an alternative set of controls in regression 18 by removing

the network factors in level. In this case, the control variables only include the changes in

the residual TFP factor. According to the model, this shouldn’t affect the estimation of

the exposure coefficients (betas). Row 2 in panel (a) of Table 7 reports the one way sorted

portfolio returns. Panel (b) and (c) report the CAPM and Fama French post sample alphas.

The return spread decreases for both sparsity and concentration. The return spread as well

as the CAPM and Fama-French alphas are significant for the sparsity-beta sorted portfolios.

However, the return spread of the concentration-beta sorted portfolios loses significance,

even though the CAPM alpha spread is significant.

CRSP sample In the benchmark estimation, I considered only CRSP stocks with network

data available. Considering all CRSP stocks, the one-way sorted portfolio results still hold

and return spread are statistically significant and of the same magnitude (row 3 in Table

7).18

As an out of sample test, I consider only stocks without network data. Interestingly, in

the out of sample test (row 4 in Table 7), the sparsity-beta sorted portfolio have a return

spread of nearly zero and not significant, while the return spread of the concentration-beta

sorted portfolio is significant at 10%. Thus, innovations in the concentration factor seem to

be a priced source of risk even among stocks without network data.

18The sample is still restricted to stocks with share codes of 10, 11 or 12, no penny stocks and at least 16
years of data in order to compute the network factors betas.
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Residual TFP In the benchmark estimation, changes in the residual TFP factor are

computed as the residual of regressing TFP growth on changes in the network factors. I

consider four alternative specifications as well. I use aggregate consumption growth rather

than TFP growth (row 5), exclude residual TFP factor from controls in regression 18 when

estimating network betas (row 6), use equation 16 to directly compute the residual TFP, but

using aggregate consumption growth rather than TFP growth (row 7), and use equation 16

to directly compute the residual TFP using reasonable returns to scale η (row 8).19

The results on the sparsity-beta sorted portfolios remain roughly unchanged. For the

concentration-beta sorted portfolios, the results are unchanged only for (i) and (ii). However,

(iii) and (iv) induce significant correlation between the estimated betas. Table 8 reports the

time series average of the cross-section correlation between the estimated betas. In the

benchmark estimation, the average correlation between the sparsity and concentration betas

is −0.14 (row 1), but it is roughly −0.80 when the residual TFP factor is computed directly

from equation 16 (rows 7 and 8).

Trailing window In the benchmark estimation, the trailing window is 15 years. The

quantitative results are robust to using trailing windows of 16 years and up to 20 years (rows

9 to 13 in Table 7).

Double sort on other factors Table 9 reports portfolios double sorted on sparsity and

7 other factors: market value, book to market ratio, total volatility (over 1 year of daily

data), idiosyncratic volatility from CAPM model (over 1 year of daily data), idiosyncratic

volatility from Fama French three-factor model (over 1 year of daily data), volume and

turnover (volume divided by market value). Table 10 reports portfolios double sorted on

concentration and on the same 7 other factors. Both the sparsity and concentration factors

are strong among stocks with high market value, low book to market (growth firms), low

volatility, high volume and low turnover.

3.4 Fama MacBeth Regressions

In the previous section, I show that innovations in concentration and sparsity are priced

such that high sparsity-beta stock earn higher average returns than stock with low sparsity-

beta, and high concentration-beta stock earn lower average returns than stock with low

concentration-beta. In addition, we may verify whether the network factors are priced in

19η represent the returns to scale to capital, thus I use η = 0.35. The quantitative results don’t change
much for η between 0.2 and 0.5.
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Table 3: Fama-MacBeth Regressions

This Table reports the prices of risk estimated from Fama MacBeth regression and t-stat are adjusted for heteroscedasticity.
I consider two sets of asset pricing factors: (1) market excess return which is the CAPM model, and (2) the factor-mimicking
portfolios along with the market excess returns. In terms of test assets, I consider 8 different test assets: (a) 10 sparsity-
beta sorted portfolios, (b) 10 concentration-beta sorted portfolios, (c) 10 sparsity-beta sorted and 10 concentration-beta sorted
portfolios, (d) 30 industry portfolios (French’s website), (e) 10 book to market portfolios (French’s website), (f) 10 idiosyncratic
volatility sorted portfolios build from monthly data using residual from CAPM model (Ang, Hodrick, Xing, and Zhang 2006),
and (g) all the previous portfolio combined, and (h) same as previous column but adding 10 market equity and 10 momentum
sorted portfolios. The sample is from January 1995 to December 2013 on monthly frequency, and all coefficients and root mean
square errors (RMSE) are annualized.

(a) (b) (c) (d)
10 Sparsity 10 Concentration 10 Sparsity and 30 Industry

10 Concentration
(1) (2) (1) (2) (1) (2) (1) (2)

Constant 19.27 7.21 4.48 6.66 11.31 3.15 11.89 10.46
t-stat 7.73 1.86 3.07 1.88 3.36 0.77 8.80 7.28
Mkt-rf −12.24 0.95 4.46 2.29 −3.16 5.19 0.40 0.70
t-stat −4.95 0.23 3.84 0.65 −0.81 1.16 0.27 0.52
Sparsity – 4.58 – −2.25 – 3.50 – 4.50
t-stat – 9.61 – −0.89 – 3.32 – 2.18
Concentration – −8.45 – −2.26 – −2.09 – −7.07
t-stat – −4.79 – −2.21 – −1.26 – −2.64
R2 0.55 0.81 0.12 0.29 0.05 0.37 0.00 0.32
RMSE 1.71 1.11 1.95 1.76 2.28 1.85 3.18 2.63

(e) (f) (g) (h)
10 Book to Market 10 Idiosyncratic All All + 10 Size

Volatility and 10 momentum
(1) (2) (1) (2) (1) (2) (1) (2)

Constant 9.13 2.58 12.34 4.17 12.93 8.53 13.29 10.37
t-stat 1.84 0.65 12.97 2.20 10.92 5.51 11.21 6.42
Mkt-rf 3.15 8.80 −3.30 4.06 −2.42 1.25 −2.37 0.01
t-stat 0.57 2.24 −5.35 2.19 −1.99 0.89 −1.96 0.01
Sparsity – 7.13 – 9.34 – 5.65 – 4.44
t-stat – 3.32 – 3.83 – 3.64 – 2.92
Concentration – −5.29 – −3.92 – −3.87 – −5.47
t-stat – −5.02 – −1.38 – −1.91 – −2.71
R2 0.07 0.53 0.60 0.74 0.06 0.34 0.05 0.28
RMSE 0.88 0.63 1.19 0.95 3.17 2.66 3.05 2.66

other portfolios as well. We may build factor-mimicking portfolios by going long on the

high beta portfolio (3rd tercile) and short on the low beta portfolio (1st tercile), then we

may use the factor-mimicking portfolios and run Fama MacBeth regressions. We can do this

exercise for any set of portfolios verifying whether innovations in sparsity and concentration

are priced.

The Fama MacBeth regression is a two-stage procedure. For a given set of test assets

and a given set of asset pricing factors, we first regress the time-series excess returns on the

factors considered, one regression for each asset. Then, in the second stage, we regress the
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time-series average of the excess returns on the estimated coefficients from the first stage.

The coefficients of the second stage are the prices of risk of the asset pricing factors.

I consider two sets of asset pricing factors: (1) market excess return which is the CAPM

model, and (2) the factor-mimicking portfolios along with the market excess returns. In terms

of test assets, I consider 8 different test assets: (a) 10 sparsity-beta sorted portfolios, (b) 10

concentration-beta sorted portfolios, (c) 10 sparsity-beta sorted and 10 concentration-beta

sorted portfolios, (d) 30 industry portfolios (French’s website), (e) 10 book to market port-

folios (French’s website), (f) 10 idiosyncratic volatility sorted portfolios build from monthly

data using residual from CAPM model (Ang, Hodrick, Xing, and Zhang 2006), and (g) all

the previous portfolio combined, and (h) same as previous one but adding 10 market equity

and 10 momentum sorted portfolios. The results are displayed in Table 3.

Innovations in either sparsity or concentration are priced in all test asset assets considered.

For example, both factor-mimicking portfolios are priced in the 30 industry portfolio (panel

d). The 30 industry portfolios are considered, because it’s close to the number of sectors

used in the construction of the network factors. Both factors are priced in the 10 portfolios

sorted on book-to-market (panel e). In the 10 portfolios sorted by idiosyncratic volatility

(panel g), only sparsity is priced. I also consider a larger set of portfolios including the sorted

portfolio considered so far and in this large set of portfolios, both sparsity and concentration

are priced (panel f). Sparsity and concentration are not priced in portfolios sorted by size

and momentum, but when we add them to the set of test assets considered both sparsity

and concentration are priced as predicted by my model.

4 Calibration

In this section, I verify whether the multisector network model is quantitatively consistent

with the empirical evidence on return spreads. The model is calibrated to replicate the

sorted portfolios from Table 2 as well as other asset pricing moments. First, I add more

structure to model in order to solve for the stochastic discount factor and then I discuss the

calibration process precisely.

4.1 Setup

The general equilibrium model specifies how innovations in network factors affect aggregate

consumption (equation 16). However, the consumption claim in the model does not have

leverage, and, in order to calibrate the model, both the levered and unlevered consumption
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processes have to be specified. First, let’s specify the unlevered consumption claim by

log zt+1 − log zt = φNC∆N Ct+1 + φNS∆N St+1 + φe∆et+1 + xt

∆N Ct+1 = σNCεNC ,t+1

∆N St+1 = σNSεNS ,t+1

∆et+1 = σeεe,t+1

xt+1 = ρxxt + σxεx,t+1

where εe,t+1, εNC ,t+1, εNS ,t+1 and εx,t+1 are i.i.d. standard normal random variables. This

specification assumes that innovation in both network factors are i.i.d. shocks, which is

consistent with the data. The expression for unlevered consumption has an extra term xt

that is the long run risk factor based on Bansal and Yaron (2004). The long-run risk term

is interpreted as a persistent component of expected consumption growth and is included

to the unlevered consumption claim to generate equity risk premium consistent with the

data. The long-run risk factor xt is quantitatively irrelevant to generate the return spread

in the sorted portfolios. It’s included to the model only to generate reasonable asset pricing

moments for the market portfolio. In the model, log zt+1 − log zt is the growth rate of the

unlevered consumption claim and loadings are given by

φNC = − 1

1− η
, φNS =

η

1− η
and φe =

1

1− η
,

where η is the return to scale.

Return on total wealth The first order approximation of the return on total wealth is

given by

rWt+1 = κc0 + ∆ log zt+1 + wct+1 − κc1wct

where κc0 = log (exp(µwc)− 1) + exp(µwc)
exp(µwc)−1

µwc, κ
c
1 = exp(µwc)

exp(µwc)−1
> 1 and µwc is the un-

conditional average of the wealth consumption expenditure ratio. One can guess that the

wealth-consumption expenditure ratio is linear on the long run risk term:

wct = µwc + Axt

where A = (1− ρ) φeφx
κc1−ρx

is a constant pinned down from the representative household Euler

equation, and the approximation of the return on total wealth becomes
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rWt+1 = rc0 + βxxt + βεeσeεe,t+1 + βεxσxεx,t+1 + βεNCσNCεNC ,t+1 + βεNSσNSεNS ,t+1

where rc0 = κc0 − µwc(κc1 − 1), βx = ρ, βεe = φe, βεx = A, βεNC = φNC and βεNS = φNS . This

is the return to unlevered consumption claim, not the market dividend itself. All detailed

derivations and expressions are in Appendix E.

Stochastic discount factor The SDF is derived based on unlevered consumption claim

and it’s given by

mt+1 = µs + λxxt − λεeσeεe,t+1 − λεxσxεx,t+1 − λεNCσNCεNC ,t+1 − λεNSσNSεNS ,t+1

where

µs = θ log β + (θ − 1)(κc0 − µwc(κc1 − 1))

λx = −γφeφx − (θ − 1)A(κc1 − ρx) = −ρφeφx
λεe = γφe

λεx = −(θ − 1)A = (γ − ρ)
φeφx
κc1 − ρx

λεNC = γφNC

λεNS = γφNS

The network factors’ price of risk depends directly on φNC < 0 and φNS > 0. Thus,

innovations in network sparsity carries a positive price of risk while innovations in network

concentration carries a negative price of risk.

Market Dividend The levered consumption claim (i.e. market dividend), however, may

have loadings different from the unlevered claim. In a more general expression, let the growth

rate of the levered consumption claim be given by

∆dmt = φmx xt + ϕmNCσNCεNC ,t+1 + ϕmNSσNSεNS ,t+1 + ϕme σeεe,t+1 + ϕmξ σξεξ,t+1

where the coefficients φmx , ϕmV , ϕmE , ϕme and ϕmξ are calibrated to match market return prop-

erties such as market betas, equity risk premium and market volatility. The process of

leveraging consumption claim affects the exposure to the asset pricing factors: levered con-

sumption may have betas different from the unlevered claim and the coefficients of the market
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dividend are post-leverage coefficients.

Portfolio Dividends Let the portfolio i dividend growth process be described by

∆di,t+1 = µi + φixxt + ϕieσeεe,t+1 + ϕixσxεx,t+1 + ϕiNCσNCεNC ,t+1 + ϕiNSσNSεNS ,t+1 + ζ iσiεi,t+1

which is the projection of stock i dividend onto the asset pricing factors. Similarly to the

market portfolio, the coefficients of the dividends growth process are calibrated to match

asset pricing moments of the portfolios.

Market and Portfolio Returns To compute the return to the market portfolio, or any

other portfolio, we guess and verify that the log price-dividend ratio for portfolio i is linear

on the long-run risk term:

pdi,t = µi,pd + Aixt

where Ai = φix+λx
1−κi1ρx

is a constant pinned down from the euler equation.

The return of portfolio i is approximated by:

ri,t+1 = ∆di,t+1 + κi0 + κi1pdi,t+1 − pdi,t

where κi1 =
exp(µi,pd)

1+exp(µi,pd)
and κi0 = log (1 + exp (µi,pd)) − κi1µi,pd are the approximation con-

stants. Substituting the price-dividend expression into the return approximation yields

ri,t+1 = ri0 + βi,xxt + βi,eεσeεe,t+1 + βi,xεσxεx,t+1 + βi,NCεσNCεNC ,t+1 + βi,NSεσNSεNS ,t+1 + ζ iσiεi,t+1

where ri0 = µi + µi,pd(κ
i
1 − 1) + κi0, βi,x = ρφeφx, βi,eε = ϕie, βi,xε = ϕix + κi1Ai, βi,NCε = ϕiNC

and βi,NSε = ϕiNS . All detailed derivations and expressions are in Appendix E.

4.2 Parameters

The model is calibrated at monthly frequency, and calibrated parameters are in Table 4.

Next, I describe the calibration of the unlevered consumption and preferences, the market

portfolio and the sorted portfolios.

Unlevered Consumption Claim and Preferences The long run risk term and prefer-

ence calibration is based on Bansal and Yaron (2004). The long run term xt is very persistent

(ρx = 0.979) and its innovations are not too volatile (σx = 0.0044 × 0.0078 ≈ 3.43 × 10−4).

Risk aversion is γ = 10 and intertemporal elasticity of substitution is above one (1
ρ

= 1.5).
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Table 4: Parameters

Parameters Value Target

Factors’ Annual Volatility

σe TFP innovation std. 0.0124 Consumption std: 2.5%
σNC Concentration innovation std. 0.0138 BEA: 0.0055, Compustat: 0.0757
σNS Sparsity innovation std. 0.0277 BEA: 0.0139, Compustat: 0.0277

Preferences

γ Risk Aversion 10 BY
1
ρ

Elasticity of Intertemporal Substitution 1.50 BY

β Discount (monthly) 0.996 Average Risk-free rate

Technology

η Returns to scale 0.35 literature

The discount β is calibrated to match the average risk-free rate of return at 1.38% per year

observed in the data.

The volatility of the network factors (σNC and σNS ) are calibrated to match the standard

deviations of the network factors. We can match the volatility of sparsity innovation exactly.

The volatility of the innovation in network concentration based on the compustat data is

too high (0.0277) and would generate a very volatile consumption process. Using BEA data,

volatility of the innovation in network concentration is considerably lower (0.0055). To rec-

oncile these two sources of data and keep the consumption volatility compatile with the data,

I set the standard deviaiton of innovation in the network concentration at an intermediate

value, σNC = 0.0138 (annualized). Finally σe is calibrated to match the consumption growth

rate volatility at 2.85% (annual) exactly, and the returns to scale to capital is set at η = 0.35

from literature.

Market Portfolio Following Bansal and Yaron (2004), the leverage parameter is cali-

brated at φmx = 3.5, and the parameters of the idiosyncratic component of the market div-

idend are calibrated at ϕmξ = 4.5, and σξ = 0.0078 to generate reasonable dividend growth

volatility, average excess return and return volatility. The loading on factors’ innovations

(ϕmV , ϕmE and ϕme ) are calibrated to match factor betas of the market portfolio.

Portfolio Dividends The loading on the long-run term are the same as the market port-

folio (φix = φmx = 3.5) and the loading on its innovation (ϕix) matches the βεx of the market

portfolio precisely. This calibration strategy makes the contribution of the long run risk to
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Table 5: Model Implied Asset Pricing Moments

Unlevered Market Sparsity Sorted Concentration Sorted
Consumption (1) (2) (3) (1) (2) (3)

Panel A: Risk-free return

Mean rf (%) – 1.38 – – – – – –
rf vol (%) – 0.39 – – – – – –

Panel B: ERP decomposition

Data (%) – 7.73 5.24 8.61 11.25 10.23 8.51 6.19
Model (%) 1.48 6.28 4.45 6.81 9.96 9.18 6.91 5.14
εe 0.37 0.68 0.84 0.89 2.36 1.15 0.94 2.00
εx 0.70 5.36 5.36 5.36 5.36 5.36 5.36 5.36
εNC 0.19 0.08 0.04 0.41 0.13 1.99 0.49 −1.91
εNS 0.22 0.17 −1.78 0.16 2.10 0.67 0.12 −0.31

Panel C: Volatility decomposition

Data (%) – 16.89 17.60 13.78 15.13 16.18 13.60 16.27
Model (%) 3.21 17.56 17.56 13.34 22.34 20.29 13.56 21.27
εe 0.96 2.10 2.68 3.00 6.99 3.30 3.12 5.78
εx 0.80 7.20 7.40 7.78 6.84 6.62 7.68 6.69
εNC 0.70 0.36 0.17 1.89 0.54 7.91 2.28 7.66
εNS 0.75 0.66 7.30 0.67 7.97 2.46 0.49 1.14
ζ – 7.24 0.00 0.00 0.00 0.00 0.00 0.00

Panel D: betas

βe 1.54 2.85 3.52 3.76 9.95 4.86 3.95 8.42
βx 13.30 101.78 101.78 101.78 101.78 101.78 101.78 101.78
βNC −1.00 −0.44 −0.20 −2.13 −0.69 −10.47 −2.60 10.04
βNS 0.54 0.40 −4.31 0.38 5.09 1.62 0.28 −0.74

Panel E: Dividend parameters

µi(×100) – 0.00 0.05 0.05 0.07 0.07 0.05 0.05
φix – 3.50 3.50 3.50 3.50 3.50 3.50 3.50
ϕix – 0.00 −7.99 1.81 5.59 4.38 1.97 −8.04
ϕie – 2.85 3.52 3.76 9.95 4.86 3.95 8.42
ϕiNC – −0.44 −0.20 −2.13 −0.69 −10.47 −2.60 10.04
ϕiNS – 0.40 −4.31 0.38 5.09 1.62 0.28 −0.74
ζi – 4.50 0.00 0.00 0.00 0.00 0.00 0.00
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the risk premium constant across all calibrated portfolio. Thus, all the equity risk premium

spreads are due to the other factors, not the long run risk. This guarantees that the long-run

risk is quantitatively irrelevant to generate the return spreads observed in the data.

Most importantly, ϕiV , ϕiE and ϕie are calibrated to match the betas estimated from the

data exactly.

4.3 Calibrated Model

Table 5 reports asset pricing moments for the market portfolio as well as for the calibrated

portfolios. Panel (a) shows the average and volatility of the risk-free rate of return. The

average is exactly the same in the data, but the model generates a risk-free rate of return

that is not as volatile as in the data: in model its volatility is 0.39% while in the data

it’s between 1% to 2% depending on the sample considered. Panels (b) and (c) report the

risk premium and return volatility in the model and in the data. Finally, panel (d) reports

portfolio factor betas, and panel (e) reports the parameterization for each portfolio.

The model replicates the expected return spread in the calibrated portfolios. The model

generates a spread of 5.5% in the sparsity-beta sorted portfolios, while the spread in the data

is 6%. The return spread in the concentration-beta sorted portfolio is matched precisely with

spread of -4.04% both in the data and in the model. The return volatilities are also replicated,

except for the third tercile in which the model generates a volatility greater than what is

observed in the data.

The contribution of the long run risk factor to the risk premium is constant across all

portfolios, which means that the long run risk does not affect the return spread. All the

return spread is originated from having different exposure to the factors. Out of the 5.5%

spread in the sparsity-beta sorted portfolios, 70% (3.88 percentage points) is due different

exposures (betas) to innovations in the network sparsity factor. For the concentration-beta

sorted portfolios, 97% (3.90 percentage points out of a total spread of 4.04%) is due different

exposures (betas) to innovations in the network concentration factor. Thus, the driving force

behind the return spread is in fact different exposures to innovations in the network factors.

5 Concluding Remarks

I have developed a multisector network model predicting that two key characteristics of

the network, sparsity and concentration, matter for asset prices and aggregate quantities

such as consumption and GDP. Changes in these two factors constitute an aggregate source

of risk that is priced in equilibrium. Using return data, there is consistent evidence that
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innovations in the network factors are priced. By sorting stocks on their exposure to factors’

innovations and forming portfolios by terciles, there is significant return gap that cannot

be explained by standard asset pricing models such the CAPM or the Fama French three

factor model. Specifically, sparsity-beta sorted portfolios have a return spread of 6% per year

and concentration-beta sorted portfolios have a return spread of -4% per year. A calibrated

model successfully replicates these return gaps.

An important extension to this paper is to focus on a less aggregated level, ideally the

firm level, in order to endogenize the network formation process. An immediate implication

of endogenous network formation is that the equilibrium may become inefficient as firms

form their connections ignoring the effects on other firms (network externality). Moreover,

endogenous network formation can potentially amplify the effects of network concentration

and sparsity depending on firms’ incentives to form their connections.

Another appealing extension is to introduce frictions in the credit market. In this case,

the standard Long and Plosser (1983) aggregation result no longer holds and sectors’ output

won’t comove as much for any given network. This extension would allow us to analyze the

relation firm level volatility and network characteristics through the lens of an equilibrium

model.
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Appendix

A Solving firms and household problems

Firms Firms maximize per-period dividend:

Di,t = max
{yij,t}j ,Ii,t

Pi,tεi,tI
η
i,t −

∑n
j=1 Pj,tyij,t

s.t.
[∑n

j=1 wijy
1−1/ν
ij,t

] 1
1−1/ν − Ii,t = 0 (µi,t)

where ν is the elasticity of substitution between two distinct inputs, η ∈ (0, 1) is the returns

to scale, and µi,t is the Lagrange multiplier.

Hence the FOC are:

yij,t : −Pj,t + µ̃i,tI
1/ν
i,t y

−1/ν
ij,t wij = 0 =⇒ yij,t = µνi,t

wνijIi,t

P ν
j,t

Ii,t : −µi,t + ηPi,tεi,tI
η−1
i,t = 0 =⇒ Ii,t =

(
ηPi,tεi,t
µi,t

) 1
1−η

and the remaining Karush-Kuhn-Tucker condition is:

[
n∑
j=1

wijy
1−1/ν
ij,t

] 1
1−1/ν

− Ii,t = 0

These are the FOC order condition of the firm’s problem. Let’s simplify them a bit more.

First, let’s substitution the yij,t FOC into the Ii,t definition:
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Ii,t =

[
n∑
j=1

wijy
1−1/ν
ij,t

] 1
1−1/ν

Ii,t =

[
n∑
j=1

wij

(
(µi,t)

ν w
ν
ijIi,t

P ν
j,t

)1−1/ν
] 1

1−1/ν

1 = (µi,t)
ν

[
n∑
j=1

wij

(
wνij
P ν
j,t

)1−1/ν
] 1

1−1/ν

∴ µi,t =

[
n∑
j=1

wij

(
wνij
P ν
j,t

)1−1/ν
]− 1/ν

1−1/ν

=

[
n∑
j=1

wνijP
1−ν
j,t

] 1
1−ν

For ν = 1, we have µi,t =
∏n
j=1 P

wij
j,t∏n

j=1 w
wij
ij

. µi,t is a network-weighted average of spot market

prices and it has to be equal to the market value value of one extra unit of investment,

according to the investment FOC. Hence, firms’ problem is fully solved by:

yij,t = µνi,t
wνijIi,t

P ν
j,t

Ii,t =

(
ηPi,tεi,t
µi,t

) 1
1−η

µi,t =

[
n∑
j=1

wνijP
1−ν
j,t

] 1
1−ν

Household Let λt be the Lagrange multiplier for the period t budget constraint. Then,

the FOC for ci,1 is given by

Jρt (1− β) C−ρt
∂Ct
∂ci,t

= Pi,tλt

which implies
∂Ct
∂ci,t

∂Ct
∂cj,t

=
Pi,t
Pj,t

and it represents the intra-period consumption allocation. For Cobb-Douglas aggregator,

the consumption allocation as a function of spot market prices:
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ci,t = αi

∑n
i=1Di,t

Pi,t

For the inter-temporal consumption allocation, the FOC for ϕi,t+1 is

Jρt βEt
[
J1−γ
t+1

] γ−ρ
1−γ Et

[
Jγt+1

∂Jt+1

∂ϕi,t+1

]
= λtQi,t

Applying the envelope theorem:

∂Jt
∂ϕi,t

= λt (Di,t +Qi,t)

= Jρt (1− β) C−ρt 1
P1,t

∂Ct
∂c1,t

(Di,t +Qi,t)

Evaluating this equation one period ahead and substituting in the inter-temporal FOC

yields

Jρt βEt
[
J1−γ
t+1

] γ−ρ
1−γ Et

[
Jγt+1J

ρ
t+1 (1− β) C−ρt+1

1

P1,t+1

∂Ct+1

∂c1,t+1

(Di,t+1 +Qi,t+1)

]
= Jρt (1− β) C−ρt

1

P1,t

∂Ct
∂c1,t

Qi,t

which can be further simplified and rearranged as

Et

β
(
Ct+1

Ct

)−ρ ∂Ct+1

∂c1,t+1
/P1,t+1

∂Ct
∂c1,t

/P1,t

 Jt+1

Et
(
J1−γ
t+1

) 1
1−γ

ρ−γ

︸ ︷︷ ︸
≡Mt+1

Di,t+1 +Qi,t+1

Qi,t︸ ︷︷ ︸
≡Ri,t+1

 = 1

B Price Normalization

B.1 Simplifying the Stochastic Discount Factor

I’ll choose the price normalization in order to simply the SDF expression. Specifically, prices

will be normalized such that the marginal aggregtator term is set to 1:

∂Ct
∂ci,t

/Pi,t = 1 ∀i, t

It turns out that the necessary price normalization has a very intuitive interpretation: it

makes the risk-free rate of return the return on a claim to the aggregator utility. To find the

necessary price normalization, I’ll write marginal aggregtator element of the SDF in terms
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of spot market prices:

∂Ct
∂ci,t

/Pi,t =
αiCt
Pi,tci,t

=
αi
Pi,t

n∏
j=1

(
cj,t
ci,t

)αj
=

αi
Pi,t

n∏
j=1

(
αj/Pj,t
αi/Pi,t

)αj
=

n∏
j=1

(
αj
Pj,t

)αj
Therefore, the prices are normalized such that:

n∏
j=1

P
αj
j,t =

n∏
j=1

α
αj
j

B.2 Price Normalization and Returns

The risk-free rate of return is given by

Rrf,t =
1

Et [Mt+1]

The risk-free rate of return is sensitive to the price normalization chosen. For example,

if good 1 is defined as the numeraire, then the “risk free” rate of return is the return on a

claim to one unit of good 1. Since all relative prices may change next period, this claim is

still risky as one unit of good 1 may buy different units of other goods. Hence, when the

household buy such claim, its payoff (in terms of aggregator utility) is random, because he

will substitute consumption goods in order to maximize utility.

To avoid this issue, I’m going to define the risk-free rate as the return on a “risk-less” bun-

dle, specifically a bundle that cancels this substitution effect keeping the aggregator utility

constant. Hence, I’m defining the risk-free return as the return on a claim to the aggregator

utility. This bundle has satisfy the intra-period first order condition of the representative

agent and its price has to be normalized to 1. We can define such risk-less claim as

Definition 1 (Risk-less Claim). The risk-less claim is a claim to the following bundle:(
α1

P1,t

, . . . ,
αn
Pn,t

)
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The price of such claim is 1, because
∑n

j=1 αj = 1. The risk-less claim satisfies the intra-

period first order condition and is a claim to the consumption aggregator: buying κ units of

such claim yields the following consumption aggregator amount:

Ct = κ

n∏
j=1

(
αj
Pj,t

)αj
= κ

B.3 Consumption expenditure and utility aggregator

Another useful property of the price normalization chosen is that consumption expenditure

and utility aggregator are the same in equilibrium. Evaluating the consumption aggregator

in equilibrium at the normalized prices yields

C (ct) =
n∏
j=1

c
αj
j,t

=
n∏
j=1

(
αjωt
Pj,t

)αj
= ωt

n∏
j=1

(
αj
Pj,t

)αj
= ωt

C Proof of Lemma 1

Proof. This is a standard proof of Epstein-Zin SDF. However, it’s not exactly the same,

because we have to keep track of the extras terms coming from the consumption aggregator.

Total wealth is defined as

Wt = ωt + Et [Mt+1Wt+1] (19)

As long as the consumption aggregator C (·) is homogeneous of degree one, one can guess

and verify that total period t wealth (Wt) in terms of good 1 can be written as

Wt

P1,t

=

(
∂ log (Ut)

∂c1,t

)−1

=
Ut
∂Ut
∂c1,t

(20)

where RHS is evaluated at the household solution. Before verifying the guess, some useful

expressions will be derived. First, using any aggregator C (·) homogeneous of degree one and

using the fact that the ration of the marginal aggregator has to equal the relative prices,
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we may write the total period t consumption expenditure (ωt) in term of the consumption

aggregator:
∂Ct
∂ci,t
∂Ct
∂c1,t

=
Pi,t
P1,t

ci,t
∂Ct
∂ci,t

= 1
P1,t

∂Ct
∂c1,t

ci,tPi,t∑n
i=1 ci,t

∂Ct
∂ci,t

= 1
P1,t

∂Ct
∂c1,t

∑n
i=1 ci,tPi,t

Ct = 1
P1,t

∂Ct
∂c1,t

∑n
i=1 ci,tPi,t

In the last step, I used that Ct is homogeneous of degree one. Rearranging the above

expression, the consumption expenditure in terms of good 1 can be expressed as:

ωt
P1,t

≡
∑n

i=1 Pi,tci,t
P1,t

=
Ct

∂Ct/∂c1,t

(21)

Second, from the household FOC, the guess in equation 20 can be written as:

Wt

P1,t

=
J1−ρ
t

C−ρt (1− β) ∂Ct/∂c1,t

(22)

To verify the initial guess equation, one can start from the total wealth definition evalu-
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ated at the optimal

Wt = ωt + Et [Mt+1Wt+1]

J1−ρ
t

C−ρt (1−β) 1
P1,t

∂Ct/∂c1,t
= Ct

1
P1,t

∂Ct/∂c1,t
+ Et

[
Mt+1

J1−ρ
t+1

C−ρt+1(1−β) 1
P1,t+1

∂Ct+1/∂c1,t+1

]
J1−ρ
t

C−ρt (1−β)∂Ct/∂c1,t
= Ct

∂Ct/∂c1,t + Et

[
β
C−ρt+1

∂Ct+1
∂c1,t+1

C−ρt
∂Ct
∂c1,t

(
Jt+1

Et(J1−γ
t+1 )

1
1−γ

)ρ−γ
J1−ρ
t+1

C−ρt+1(1−β)∂Ct+1/∂c1,t+1

]
J1−ρ
t

C−ρt (1−β)∂Ct/∂c1,t
= Ct

∂Ct/∂c1,t + Et

[
β 1

C−ρt
∂Ct
∂c1,t

(
Jt+1

Et(J1−γ
t+1 )

1
1−γ

)ρ−γ
J1−ρ
t+1

(1−β)

]
J1−ρ
t

C−ρt (1−β)
= Ct + Et

[
β
C−ρt+1

C−ρt

(
Jt+1

Et(J1−γ
t+1 )

1
1−γ

)ρ−γ
J1−ρ
t+1

C−ρt+1(1−β)

]

J1−ρ
t = (1− β) C1−ρ

t + Et

[
β

(
Jt+1

Et(J1−γ
t+1 )

1
1−γ

)ρ−γ

J1−ρ
t+1

]

J1−ρ
t = (1− β) C1−ρ

t + Et

[
β

J1−γ
t+1

Et(J1−γ
t+1 )

ρ−γ
1−γ

]
J1−ρ
t = (1− β) C1−ρ

t + βEt
(
J1−γ
t+1

)1− ρ−γ
1−γ

Jt =

[
(1− β) C1−ρ

t + βEt
(
J1−γ
t+1

) 1−ρ
1−γ

] 1
1−ρ

Using the EZ preference definition, the expected value term in the SDF can written as:

Et
(
U1−γ
t+1

) 1
1−γ = β

−1
1−ρ
[
U1−ρ
t − (1− β) (Ct)1−ρ] 1

1−ρ

and the value function itself can be written in terms of wealth:

Wt

P1,t

=
J1−ρ
t

C−ρt (1− β) ∂Ct/∂c1,t

=⇒ Jt =

[
WtC−ρt (1− β)

1

P1,t

∂Ct/∂c1,t

] 1
1−ρ
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Next, the SDF in terms of wealth return:

Mt+1 ≡ β
C−ρt+1

1
P1,t+1

∂Ct+1
∂c1,t+1

C−ρt
1

P1,t

∂Ct
∂c1,t

(
Jt+1

Et(J1−γ
t+1 )

1
1−γ

)ρ−γ

= β
C−ρt+1

1
P1,t+1

∂Ct+1
∂c1,t+1

C−ρt
1

P1,t

∂Ct
∂c1,t

(
Jt+1

β
−1
1−ρ [J1−ρ

t −(1−β)(Ct)1−ρ]
1

1−ρ

)ρ−γ

= β
C−ρt+1

1
P1,t+1

∂Ct+1
∂c1,t+1

C−ρt
1

P1,t

∂Ct
∂c1,t

 [
Wt+1C−ρt+1(1−β) 1

P1,t+1
∂Ct+1/∂c1,t+1

] 1
1−ρ

β
−1
1−ρ

[
WtC−ρt (1−β) 1

P1,t
∂Ct/∂c1,t−(1−β)(Ct)1−ρ

] 1
1−ρ

ρ−γ

= β
C−ρt+1

1
P1,t+1

∂Ct+1
∂c1,t+1

C−ρt
1

P1,t

∂Ct
∂c1,t

(
βWt+1C−ρt+1

1
P1,t+1

∂Ct+1/∂c1,t+1

WtC−ρt
1

P1,t
∂Ct/∂c1,t−(Ct)1−ρ

) ρ−γ
1−ρ

= β
1−γ
1−ρ

(
Ct+1

Ct

)−ρ 1−γ
1−ρ
(

1
P1,t+1

∂Ct+1/∂c1,t+1

1
P1,t

∂Ct/∂c1,t

) 1−γ
1−ρ
(

Wt+1

Wt− Ct
1

P1,t
∂Ct/∂c1,t

) ρ−γ
1−ρ

= βθ
(
Ct+1

Ct

)−ρθ ( 1
P1,t+1

∂Ct+1/∂c1,t+1

1
P1,t

∂Ct/∂c1,t

)θ (
Wt+1

Wt−ωt

)1−θ

= βθ
(
Ct+1

Ct

)−ρθ ( 1
P1,t+1

∂Ct+1/∂c1,t+1

1
P1,t

∂Ct/∂c1,t

)θ (
RWt+1

)1−θ

= βθ
(
ωt+1

ωt

)−ρθ ( 1
P1,t+1

∂Ct+1/∂c1,t+1

1
P1,t

∂Ct/∂c1,t

)1−γ (
RWt+1

)1−θ

where RWt+1 = Wt+1

Wt−ωt it the return on total wealth and θ = 1−γ
1−ρ .
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D Closed-form expressions: derivations

D.1 Output share

Starting form the market clearing condition for good i, we have:

ci,t +
∑
j

yji,t = Yi,t

ci,t +
∑
j

µνi,t
wνji,tIj,t

P ν
i,t

= Yi,t

Pi,tci,t +
∑
j

µνjw
ν
ji,tP

1−ν
i,t Ij,t = Pi,tYi,t

αi(1− η)zt + η
∑
j

wνji,t

(
Pi,t
µj

)1−ν

Pj,tYj,t = Pi,tYi,t

αi(1− η)zt + η
∑
j

wνji,tP
1−ν
i,t∑

sw
ν
jsP

1−ν
s

Pj,tYj,t = Pi,tYi,t

(1− η)αizt + η
∑
j

Pj,tYj,tw̃ji,t = Pi,tYi,t,

where zt =
∑

i Pi,tYi,t is the total output of the economy at period t and w̃ji,t =
wνji,tP

1−ν
i,t∑

s w
ν
jsP

1−ν
s

.

In matrix notation, the above system becomes:

(1− η)αzt + ηW̃ ′
t

−→
PY t =

−→
PY t, (23)

where
−→
PY t is a column vector of sectors’ output, W̃t is a n × n matrix whose (i,j) entry is

w̃ji,t and α is a column vector with preference weights.

We can solve system 23 and express the output of each firm as a fraction of the total

output.
−→
PY t = (1− η)

[
I− ηW̃ ′

t

]−1

α︸ ︷︷ ︸
≡δt

z = δtzt, (24)

where δt is a n× 1 vector of output shares of each sector/firm.

When ν = 1, the output shares is completely determined by the network and household

preferences:

δt = (1− η) [I− ηW ′
t ]
−1
α (25)
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D.2 Equilibrium Conditions

The stochastic discount factor, however, depends on changes in the aggregate consump-

tion expenditure, namely log
(
ωt+1

ωt

)
. Consumption expenditure is proportional to the total

output, as

ωt =
∑
j

cj,tPj,t =
∑
j

Dj,t = (1− η)
∑
j

Pj,tYj,t = (1− η)zt.

This implies that total output growth is equal to total consumption expenditure growth:

log

(
ωt+1

ωt

)
= log

(
zt+1

zt

)
Using the first order condition of firm i, we can derive equation 15 as follows:

δi,tzt = Pi,tYi,t

δi,tzt =
µi,tIi,t
η

δi,tzt =
µi,t

(
ηPi,tεi,t
µi,t

) 1
1−η

η

δi,tzt = µ
− η

1−η
i,t P

1
1−η
i,t ε

1
1−η
i,t η

η
1−η

(δi,tzt)
1−η = µ−ηi,t Pi,tεi,tη

η

D.3 Output growth: Cobb-Doublas case

Assuming that ν = 1, the Langrange multiplier becomes:

µi,t =
∏
j

P
wij,t
j,t

w
wij,t
ij,t

Substituting the multiplier into (15):

(δi,tzt)
1−η = µ−ηi,t Pi,tεi,tη

η

(1− η) log δi,t + (1− η) log zt = −η log µi,t + logPi,t + log εi,t + η log η

(1− η) log δi,t + (1− η) log zt = −η
∑
j

wij,t logPj,t + η
∑
j

wij,t logwij,t + logPi,t + log εi,t + η log η

Writing the above system in matrix notation and using the price normalization yields:
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(1− η) log δt + (1− η)1 log zt = −ηW logPt + η
−→
N S t + logPt + log εt + 1η log η

logPt = [I− ηW ]−1
(

(1− η) log δt + (1− η)1 log zt − η
−→
N S t − log εt − 1η log η

)
α′ logPt = α′ [I− ηW ]−1

(
(1− η) log δt + (1− η) log zt − η

−→
N S t − log εt − η log η

)
α′ logα = δ′t

(
log δt + 1 log zt −

η

1− η
−→
N S t −

1

1− η
log εt − 1

η

1− η
log η

)
α′ logα = log zt −

η

1− η
log η + δ′t

(
log δt −

η

1− η
−→
N S t −

1

1− η
log εt

)

Thus, the output in equilibrium is given by:

log zt = α′ logα +
η

1− η
log η − δ′t

(
log δt −

η

1− η
−→
N S t −

1

1− η
log εt

)

where
−→
N S t is a n× 1 vector with the ith being N Si,t =

∑
j wij,t logwij,t and δt is also a n× 1

vector with the output shares as in equation (25).

Taking one period difference, we have the equilibrium output growth to be:

log zt+1 − log zt = −
(
δ′t+1 log δt+1 − δ′t log δt

)
+

η

1− η

(
δ′t+1

−→
N S t+1 − δ′t

−→
N S t

)
+

1

1− η
(
δ′t+1 log εt+1 − δ′t log εt

)
= −

(
N Ct+1 −N Ct

)
+

η

1− η
(
N St+1 −N St

)
+

1

1− η
(et+1 − et)

Furthermore, the equilibrium spot market prices are given by:

logPt = [I− ηWt]
−1
[
(1− η) log δt + (1− η)1 log zt − η

−→
N S t − log εt − 1η log η

]
(26)

= log zt −
η

1− η
log η + (1− η) [I− ηWt]

−1
[
log δt − η

−→
N S t − log εt

]
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D.4 Output growth: approximation

Although we don’t have a closed-form solution for ν 6= 1, we can approximated the equi-

librium solution around v = 1. The equilibrium is the solution to system of equations 12

and 15, doing a first order approximation of the solution around v = 1 yields the following

output growth rate:

log zt+1 − log zt ≈ −
(
N Ct+1 −N Ct

)
+

η

1− η
(
N St+1 −N St

)
+

1

1− η
(et+1 − et)

+
η

1− η
(
δ′t+1Ψt+1 − δ′tΨt

)
(ν − 1)

where δ′tΨt =
∑

i δi,tΨi,t, δi,t is the output share of firm i when ν = 1 and Ψi,t is given by

Ψi,t ≡ −
∂

∂ν
log µi,t

∣∣∣∣
ν=1

=
1

2

∑
j

wij,t

(
log

wij,t
P̄j,t
−
∑
s

wis,t log
wis,t
P̄s,t

)2

> 0

where P̄i,t is the market price of good i when ν = 1 (equation 26) The detailed derivation

of the above expression is in the appendix. The negative sign for the derivative is intuitive:

if the firm can substitute input more easily (higher ν), then it should be less constrained.

Moreover, the slope Ψi,t is proportional to the input variance using the network weight as

probability measure:

Ψi,t =
1

2

∑
j

wij

(
log ȳij,t −

∑
s

wis log ȳis,t

)2

=
1

2
Vari (log ȳij,t)

where ȳij,t is the input that firm i would have bought from firm j under ν = 1 in equilibrium.

This gives us a clear-cut intuition for this additional factor: it’s the average input dis-

persion under ν = 1. If the input dispersion increases on average at the unit elasticity

equilibrium, then

δ′t+1Ψt+1 − δ′tΨt > 0.

If ν > 1, then firms become less constraint (multiplier decreases) as they benefit from

input substitution and total output increases. Input dispersion is good (increases output

and consumption) when firms substitute inputs more efficiently (ν > 1).
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Derivation Let’s combine equations 12 and 15 into one system of n+1 equation and n+1

unknowns:

fi(x, ν) = (1− η) log δi,t + (1− η) log zt + η log µi,t − logPi,t − log εi,t − η log η = 0 ∀i = 1, . . . , n

fn+1(x, ν) =
∑
i

αi logPi,t −
∑
i

αi logαi,t = 0

where x = (logP1,t, . . . , logPn,t, log zt). The function f : Rn+2 → Rn+1 specifies the system

of equations that fully characterize the equilibrium. Let x∗(ν) be the solution to

f(x∗, ν) = 0. (27)

Thus, the equilibrium x∗(ν) depends implicitly on ν. Furthermore, we know the solu-

tion when ν = 1 from the cobb-douglas case derived in the previous section, and we can

approximate the equilibrium x∗(ν) around ν = 1:

log zt ≈ log zt|ν=1 +
∂

∂ν
log zt

∣∣∣∣
ν=1

(ν − 1)

where the derivative term can be computed using the implicit function theorem to system

(27).

The term ∂
∂ν

log zt
∣∣
ν=1

is the last entry of

∂

∂ν
x∗t = −

[
∂

∂x
f(x, ν)

]−1
∂

∂ν
f(x, ν)

where

∂

∂x
f(x, ν) =


∂
∂x1
f1(x, ν) . . . ∂

∂xn+1
f1(x, ν)

...
. . .

...
∂
∂x1
fn+1(x, ν) . . . ∂

∂xn+1
fn+1(x, ν)


n+1×n+1

=


∂

∂ logP1,t
f1 . . . ∂

∂ logPn,t
f1

∂
∂ log zt

f1

...
. . .

...
...

∂
∂ logP1,t

fn+1 . . . ∂
∂ logPn,t

fn+1
∂

∂ log zt
fn+1


n+1×n+1

,
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and

∂

∂ν
f(x, ν) =


∂
∂ν
f1(x, ν)

...
∂
∂ν
fn+1(x, ν)


n+1×1

where all derivatives are evaluated at ν = 1.

Next, we have to calculate of entry of the matrices ∂
∂x
f(x, ν) and ∂

∂ν
f(x, ν). Let’s start

by computing the entries of ∂
∂x
f(x, ν) and its inverse:

∂
∂ logPj,t

fi

∣∣∣
ν=1

= ηwij,t for i, j = 1, . . . , n and i 6= j

∂
∂ logPi,t

fi

∣∣∣
ν=1

= ηwij,t − 1 for i = 1, . . . , n

∂
∂ log zt

fi

∣∣∣
ν=1

= 1− η for i = 1, . . . , n

∂
∂ logPi,t

fn+1

∣∣∣
ν=1

= αi for i = 1, . . . , n

∂
∂ log zt

fn+1

∣∣∣
ν=1

= 0

Thus,

∂

∂x
f(x, y) =



ηw11,t − 1 ηw12,t . . . ηw1n,t 1− η
ηw21,t ηw22,t − 1 . . . ηw2n,t 1− η

...
. . .

...
...

ηwn1,t ηwn2,t . . . ηwnn,t − 1 1− η
α1 α2 . . . αn 0


n+1×n+1

=

[
−(I− ηW ) 1(1− η)

α′ 0

]

and its inverse is given by

[
∂

∂x
f(x, y)

]−1

=

[
−(I− ηW ) 1(1− η)

α 0

]−1

=

[
−(I− 1α′)(I− ηW )−1 1

α′(I− ηW )−1 1

]

Next, let’s compute the entries of ∂
∂ν
f(x, ν):

∂
∂ν
fi
∣∣
ν=1

= (1− η) ∂
∂ν

log δi,t
∣∣
ν=1

+ η ∂
∂ν

log µi,t
∣∣
ν=1

for i = 1, . . . , n

∂
∂ν
fn+1

∣∣
ν=1

= 0
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where

∂

∂ν
log µi,t

∣∣∣∣
ν=1

=
∂

∂ν

log
(∑

j w
ν
ij,tP

1−ν
j,t

)
1− ν

∣∣∣∣∣∣
ν=1

= lim
ν→1

∂

∂ν

log
(∑

j w
ν
ij,tP

1−ν
j,t

)
1− ν

= lim
ν→1

1

(1− ν)2

(1− ν)
(∑

j w
ν
ij,tP

1−ν
j,t (logwij,t − logPj,t)

)
∑

j w
ν
ij,tP

1−ν
j,t

+ log

(∑
j

wνij,tP
1−ν
j,t

)
= lim

ν→1

∑
j(1− ν)w̃ij,t log

wij,t
Pj,t

+ log
(∑

j w
ν
ij,tP

1−ν
j,t

)
(1− ν)2

where w̃ij,t =
wνij,tP

1−ν
j,t∑

j w
ν
ij,tP

1−ν
j,t

. Using L’Hôspital’s rule twice:

∂

∂ν
log µi,t

∣∣∣∣
ν=1

= lim
ν→1

∑
j(1− ν)w̃ij,t log

wij,t
Pj,t

+ log
(∑

j w
ν
ij,tP

1−ν
j,t

)
(1− ν)2

= lim
ν→1

∑
j

(
(1− ν)

∂w̃ij,t
∂ν
− w̃ij,t

)
log

wij,t
Pj,t

+

∑
j w

ν
ij,tP

1−ν
j,t log

wij,t
Pj,t∑

j w
ν
ij,tP

1−ν
j,t

−2(1− ν)

= lim
ν→1

∑
j

(
(1− ν)

∂w̃ij,t
∂ν
− w̃ij,t

)
log

wij,t
Pj,t

+
∑

j w̃ij,t log
wij,t
Pj,t

−2(1− ν)

= lim
ν→1

∑
j

(
(1− ν)

∂2w̃ij,t
∂ν2

− 2
∂w̃ij,t
∂ν

)
log

wij,t
Pj,t

+
∑

j
∂w̃ij,t
∂ν

log
wij,t
Pj,t

2

= lim
ν→1

∑
j

(
(1− ν)

∂2w̃ij,t
∂ν2

− ∂w̃ij,t
∂ν

)
log

wij,t
Pj,t

2

=
1

2
lim
ν→1

∑
j

(
(1− ν)

∂2w̃ij,t
∂ν2

− ∂w̃ij,t
∂ν

)
log

wij,t
Pj,t

= −1

2
lim
ν→1

∑
j

(
∂w̃ij,t
∂ν

)
log

wij,t
Pj,t

= −1

2

∑
j

wij,t

(
log

wij,t
P̄j,t
−
∑
s

wis,t log
wis,t
P̄s,t

)
log

wij,t
P̄j,t

= −1

2

∑
j

wij,t

(
log

wij,t
P̄j,t
−
∑
s

wis,t log
wis,t
P̄s,t

)2

= −Ψi,t
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The term ∂
∂ν

log δi,t
∣∣
ν=1

has to be computed the implicit function theorem. {δi,t}i is the

solution to the following system of equation:

gi(δt, ν) = 0 ∀ i = 1, . . . , n

where

gi(δt, ν) = (1− η)αi + η
∑
j

w̃ji,tδj,t − δi,t

Therefore,

∂

∂ν
δt = −

[
∂

∂δt
g(δt, ν)

]−1
∂

∂ν
g(δt, ν)

=
[
I− ηW̃ ′

]−1


η
∑

j δj,t
∂
∂ν
w̃j1,t

...

η
∑

j δj,t
∂
∂ν
w̃jn,t


where

∂

∂ν
w̃ij,t

∣∣∣∣
ν=1

= wij,t

(
log

wij,t
P̄j,t
−
∑
s

wis log
wis,t
P̄s,t

)
≡ ¯wij,t

Notice that
∑

j w̄ij = 0 and
∑

j
∂
∂ν
δj,t
∣∣
ν=1

= 0. Let W̄t be a n× n matrix whose element

(i, j) is w̄ij,t. Thus,

∂

∂ν
δt

∣∣∣∣
ν=1

= [I− ηW ′
t ]
−1
W̄ ′
t δ̄t

∂

∂ν
log δi,t

∣∣∣∣
ν=1

=
1

δ̄i,t

∂

∂ν
δi,t

∣∣∣∣
ν=1

and

∂

∂ν
f(x, ν) =


(1− η) 1

δ̄1,t

∂
∂ν
δ1,t

∣∣
ν=1
− ηΨ1,t

...

(1− η) 1
δ̄n,t

∂
∂ν
δn,t
∣∣
ν=1
− ηΨn,t

0


Altogether yields:
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∂

∂ν
x∗t = −

[
∂

∂x
f(x, ν)

]−1
∂

∂ν
f(x, ν)

= −

[
−(I− 1α′)(I− ηW )−1 1

α′(I− ηW )−1 1

]
(1− η) 1

δ̄1,t

∂
∂ν
δ1,t

∣∣
ν=1
− ηΨ1,t

...

(1− η) 1
δ̄n,t

∂
∂ν
δn,t
∣∣
ν=1
− ηΨn,t

0


and, since ∂

∂ν
log zt is the last entry of the vector above,

∂

∂ν
log zt = −

[
α′(I− ηW )−1 1

]


(1− η) 1
δ̄1,t

∂
∂ν
δ1,t

∣∣
ν=1
− ηΨ1,t

...

(1− η) 1
δ̄n,t

∂
∂ν
δn,t
∣∣
ν=1
− ηΨn,t

0



= −
[

1
1−η δ̄

′
t 1

]


(1− η) 1
δ̄1,t

∂
∂ν
δ1,t

∣∣
ν=1
− ηΨ1,t

...

(1− η) 1
δ̄n,t

∂
∂ν
δn,t
∣∣
ν=1
− ηΨn,t

0


= −

∑
j

1

1− η
δ̄j,t

(
(1− η)

1

δ̄j,t

∂

∂ν
δj,t

∣∣∣∣
ν=1

− ηΨj,t

)
= −

∑
j

1

1− η
δ̄j,t

(
(1− η)

1

δ̄j,t

∂

∂ν
δj,t

∣∣∣∣
ν=1

− ηΨj,t

)
= −

∑
j

∂

∂ν
δj,t

∣∣∣∣
ν=1

+
η

1− η
∑
j

δ̄j,tΨj,t

=
η

1− η
∑
j

δ̄j,tΨj,t

=
η

1− η
δ̄′tΨt
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Hence, the output can be approximated by

log zt ≈ log zt|ν=1 +
∂

∂ν
log zt

∣∣∣∣
ν=1

(ν − 1)

= log zt|ν=1 +
η

1− η
δ̄′tΨt(ν − 1)

= α′ logα +
η

1− η
log η − δ̄′t

(
log δ̄t −

η

1− η
−→
N S t −

1

1− η
log εt

)
+

η

1− η
δ̄′tΨt(ν − 1)

and the approximation for the output growth is given by

log zt+1 − log zt ≈ −
(
δ̄′t+1 log δ̄t+1 − δ̄′t log δ̄t

)
+

η

1− η

(
δ̄′t+1

−→
N S t+1 − δ̄′t

−→
N S t

)
+

1

1− η
(
δ̄′t+1 log εt+1 − δ̄′t log εt

)
+

η

1− η
(
δ̄′t+1Ψt+1 − δ̄′tΨt

)
(ν − 1)

= −
(
N Ct+1 −N Ct

)
+

η

1− η
(
N St+1 −N St

)
+

1

1− η
(et+1 − et)

+
η

1− η
(
δ̄′t+1Ψt+1 − δ̄′tΨt

)
(ν − 1)

E Stochastic Discount Factor Derivation

In this section, I’ll do the detailed derivation of the wealth consumption expenditure ratio,

the stochastic discount factor and the prices of risk. The unlevered consumption claim is

fully described by

log zt+1 − log zt = φNC∆N Ct+1 + φNS∆N St+1 + φe∆et+1 + xt

∆N Ct+1 = σNCεNC ,t+1

∆N St+1 = σNSεNS ,t+1

∆et+1 = σeεe,t+1

xt+1 = ρxxt + σxεx,t+1

where εe,t+1, εNC ,t+1, εNS ,t+1 and εx,t+1 are i.i.d. standard normal random variables.

The return on total wealth can be approximated (1st order approximation) by

rWt+1 = κc0 + ∆ωt+1 + wct+1 − κc1wct
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where

κc0 = log (exp(µwc)− 1) +
exp(µwc)

exp(µwc)− 1
µwc,

κc1 =
exp(µwc)

exp(µwc)− 1
> 1

and µwc is the unconditional average of the wealth consumption expenditure ratio.

I’ll start from the guess that the wealth-consumption expenditure ratio is a linear on xt

wct = µwc + Axt

where A is a constant. Substituting the wealth-consumption ratio expression in the return

approximation yields:

rWt+1 = rc0 + βxxt + βεeσeεe,t+1 + βεxσxεx,t+1 + βεNCσNCεNC ,t+1 + βεNSσNSεNS ,t+1

where

rc0 = κc0 − µwc(κc1 − 1)

βx = φxφe − A(κc1 − ρx)

βεe = φe

βεx = A

βεNC = φNC

βεNS = φNS

Using lemma 1, the stochastic discount factor is given by

mt+1 = θ log β − ρθ∆zt+1 + (θ − 1)rWt+1

= µs + λxxt − λεeσeεe,t+1 − λεxσxεx,t+1 − λεNCσNCεNC ,t+1 − λεNSσNSεNS ,t+1
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where

µs = θ log β + (θ − 1)(κc0 − µwc(κc1 − 1))

λx = −γφeφx − (θ − 1)A(κc1 − ρx)

λεe = γφe

λεx = −(θ − 1)A

λεNC = γφNC

λεNS = γφNS

The euler equation for the return on total wealth is given by

0 = µs + rc0 + (βx + λx)xt

+
1

2

[
(βεx − λεx)2σ2

e + (βεe − λεe)2σ2
e + (βεNC − λεNC)2σ2

NC + (βεNS − λεNS )2σ2
NS
]

Using method of undetermined coefficients, A solves

0 = βx + λx

= φeφx − A(κc1 − ρx)− γφeφx − (θ − 1)A(κc1 − ρx)

= −φeφx(γ − 1)− Aθ(κc1 − ρx)

∴ A = −φeφx(γ − 1)

θ(κc1 − ρe)
= (1− ρ)

φeφx
κc1 − ρx

and µwc solves the following nonlinear equation:

0 = µs + rc0 +
1

2

[
(βεe − λεe)2σ2

e + (βεx − λεx)2σ2
x + (βεNC − λεNC)2σ2

NC + (βεNS − λεNS )2σ2
NS
]

E.1 Portfolio

Let the portfolio i dividend growth process be described by

∆di,t+1 = µi + φixxt + ϕieσeεe,t+1 + ϕixσxεx,t+1 + ϕiNCσNCεNC ,t+1 + ϕiNSσNSεNS ,t+1 + ζ iσiεi,t+1

We guess and verify that the log price-dividend ratio is linear on xt:

pdi,t = µi,pd + Aixt
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As the wealth return, the stock returns are approximated by:

ri,t+1 = ∆di,t+1 + κi0 + κi1pdi,t+1 − pdi,t

where κi1 =
exp(µi,pd)

1+exp(µi,pd)
and κi0 = log (1 + exp (µi,pd)) − κi1µi,pd are the approximation con-

stants. Substituting the price-dividend expression into the return approximation yields

ri,t+1 = ∆di,t+1 + κi0 + κi1pdi,t+1 − pdi,t
= ri0 + βi,xxt + βi,eεσeεe,t+1 + βi,xεσxεx,t+1 + βi,NCεσNCεNC ,t+1 + βi,NSεσNSεNS ,t+1 + ζ iσiεi,t+1

where

ri0 = µi + µi,pd(κ
i
1 − 1) + κi0

βi,x = φix − Ai(1− κi1ρx)

βi,eε = ϕie

βi,xε = ϕix + κi1Ai

βi,NCε = ϕiNC

βi,NSε = ϕiNS

The euler equation for portfolios i is given by:

0 = µs + rci + (βi,x + λx)xt

+
1

2

[
(βi,eε − λεe)2σ2

e + (βi,xε − λεx)2σ2
x + (βi,NCε − λεNC)2σ2

NC + (βi,NSε − λεNS )2σ2
NS + ζ i

2
σ2
i

]
Using method of undetermined coefficients, Ai solves

0 = βi,x + λx

0 = φix − Ai(1− κi1ρx) + λx

Ai =
φix + λx
1− κi1ρx

and µi,pd solves the following nonlinear equation

0 = µs + rci

+
1

2

[
(βi,eε − λεe)2σ2

e + (βi,xε − λεx)2σ2
x + (βi,NCε − λεNC)2σ2

NC + (βi,NSε − λεNS )2σ2
NS + ζ i

2
σ2
i

]
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F Data Construction

F.1 Network data

The input-output network matrix is necessary to compute the asset pricing factors discussed

in this paper. The main input-output data source are the BEA Input-Output tables, however

this data set is only available from 1997 to 2012 on annual basis. Due to the short BEA

sample, I compute an estimate of the IO table based on the Compustat segment customer

data, which is on annual basis from 1979 to 2013. If a customer represent more than 10% of

the seller’s sales, then the customer’s name is reported in the compustat customer segment

data as well as the sales to that particular customer. Cohen and Frazzini (2008) located the

CRSP permanent number, PERMNO, of the customer until the year of 2009 and I updated

their data set by locating the customer identification number up to 2013. Therefore, from

this data set, it’s possible to get the some entries of the network matrix W , however the

resulting network is truncated since all supplier-customers transaction are not observed.

The model is at the sector level, so in order to make data and model compatible, compustat

customer sales data is aggregate by firm’s naics code at the 2-digit sector level.

In order to mitigate the truncation issue, I consider three alternatives ways to compute

the the network matrix: (i) assume that all non observed entries are equal to zero and

normalize each row to sum one, (ii) equally distributing the reaming weight across sectors,

or (iii) assume that all non observed entries are equal to zero and compute the factors based

on the truncated network. Besides the network calculation itself, we can compute the output

shares in two distinct ways as well: (i) use the compustat reported total sales, or (ii) use

only sales reported in the compustat customer segment data in order respect the network

truncation. This will result in two distinct ways to compute the shares δ. Hence, for each of

δ type, we may compute the concentration factor directly from the δ, and the sparsity factor

may be computed for each of the three alternative networks considered.

To choose which network to use, I compare each one of them to factor copmuted from

the the BEA input-output tables. The BEA data is from 1997 to 2012, so I chose the factors

calculation based on their correlations with the BEA factors. Figures 7 plots all the factors

and their respective innovations using the δ based on the compustat customer segment data

and Figure 8 plots the factors based on the compustat total sales. The calculations that

result in the highest correlation with the BEA data is using compustat customer segment

sales and equally distributing the remaining network weights across sectors (solid blue line

in both Figures).

Figure ?? shows the average fraction of sales to a particular customer type: Foreign Gov-

ernments, US Government (Federal, State and Local), Foreign Countries (not US market),
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Figure 7: BEA amd Compustat Network Factors: using total customer segment sales
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other Companies and companies that had their CRSP identification located. The fraction

of customers with CRSP PERMNO identified are roughly constant over time.

The output shares also depend both on the network and on the preference weights. The

BEA input-output table report the consumption of sector by the final consumer. Using the

consumption of the final consumer to compute the preference weights, we may compare the

concentration factor implied by the model (i.e. using the network and preference weights)

with and without keeping the preference weights constant. Figure 9 reports the concentration

factor using the BEA output shares directly (solid blue line), using model implied shares

keeping preferences weights constant (avg. consumption expenditure shares), and using

model implied shares with consumption expenditure shares (α) varying over time as well.

The resulting time series suggests that the concentration is almost entirely driven by changes

in the network rather than changes in the household preferences.
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Figure 8: BEA amd Compustat Network Factor: using total sales
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Figure 9: Concentration Factors: using model implied shares and directly using shares from
BEA

This Figure reports the concentration factor using the BEA output shares directly (solid blue line), using model implied shares
keeping alpha constant (avg. consumption expenditure shares), and using model implied shares with consumption expenditure
shares (alphas) varying over time as well. All series are standardized.
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Table 6: Double Sort

This Table reports average excess return in panel A, post sample CAPM alphas in panel B and post sample Fama French alphas
in panel C. Stocks are independently double sorted on sparsity-beta and concentration-beta, and double-sorted portfolios are
formed by terciles.

Panel A: returns
Concentration

Sparsity (1) (2) (3) (3)-(1) t-stat
(1) 10.38 7.95 4.56 −5.82 −1.58
(2) 12.79 7.56 8.54 −4.25 −1.29
(3) 10.95 10.71 15.82 4.87 1.27
(3)-(1) 0.57 2.76 11.26 – –
t-stat 0.13 0.72 3.00 – –

Panel B: αCAPM
Concentration

Sparsity (1) (2) (3) (3)-(1) t-stat
(1) 1.18 0.07 −4.06 −5.24 −1.41
(2) 4.62 1.74 2.40 −2.22 −0.69
(3) 4.11 4.72 8.73 4.61 1.18
(3)-(1) 2.93 4.66 12.79 – –
t-stat 0.68 1.23 3.42 – –

Panel C: αFF
Concentration

Sparsity (1) (2) (3) (3)-(1) t-stat
(1) 0.47 −0.10 −4.56 −5.03 −1.40
(2) 5.00 0.82 0.84 −4.16 −1.42
(3) 2.99 3.52 8.87 5.88 1.63
(3)-(1) 2.52 3.63 13.43 – –
t-stat 0.63 0.99 3.68 – –
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Table 7: Robustness

This Table reports average excess return in panel A, post sample CAPM alphas in panel B and post sample Fama French
alphas in panel C. Stocks are sorted on sparsity-beta and concentration-beta, and one-way sorted portfolios are formed by
terciles. Each row corresponds to a different specification: (1) is benhmark estimation, (2) excludes network factors in level
from the exposure estimation in regression 18, (3) considers all CRSP stocks, i.e. stocks with and without network data, (4)
considers only CRSP stocks without network data, (5) uses innovations in residual TFP as consumption growth orthogonalized
to network factors’ innovations, (6) excludes residual TFP from beta estimations, (7) uses equation 16 to directly compute the
residual TFP, but using aggregate consumption growth rather than TFP growth, and (8) uses equation 16 to directly compute
the residual TFP using reasonable returns to scale η = .35, (9) uses 16 years as trailing window, (10) uses 17 years as trailing
window, (11) uses 18 years as trailing window, (12) uses 19 years as trailing window, and (13) uses 20 years as trailing window.

Panel A: average returns
Sparsity one-way sort Concentration one-way sort

(1) (2) (3) (3)-(1) t-stat (1) (2) (3) (3)-(1) t-stat
1. Benchmark 5.24 8.61 11.25 6.01 2.26 10.23 8.51 6.19 −4.04 −2.19
2. No level control 5.28 9.23 9.75 4.47 1.90 9.69 8.87 6.18 −3.50 −1.55
3. All CRSP stocks 5.83 7.94 11.61 5.78 2.17 10.12 8.38 6.29 −3.83 −2.13
4. Out of Sample 8.42 10.22 8.73 0.31 0.14 10.03 9.93 6.78 −3.25 −1.61
5. R. TFP from Cons. 5.39 8.35 11.42 6.03 2.09 9.61 8.55 6.19 −3.42 −1.64
6. No TFP 5.27 8.92 10.76 5.49 1.92 10.47 8.71 5.58 −4.89 −2.51
7. R. TFP from Cons., η = .35 5.21 8.89 10.15 4.93 1.94 8.90 8.55 5.80 −3.10 −1.32
8. R. TFP from TFP, η = .35 6.46 7.69 11.36 4.90 1.96 8.92 7.53 7.61 −1.32 −0.66
9. 16-year window 4.81 7.47 10.31 5.51 1.92 10.51 6.57 5.17 −5.35 −2.73
10. 17-year window 3.92 7.05 8.83 4.91 1.46 9.67 6.27 3.67 −6.00 −2.52
11. 18-year window 2.46 6.02 7.03 4.57 1.22 7.57 5.24 2.42 −5.15 −2.19
12. 19-year window −0.52 5.29 8.02 8.54 2.02 6.90 4.36 0.97 −5.93 −2.45
13. 20-year window 0.42 5.69 6.90 6.48 1.73 5.76 4.60 2.17 −3.60 −1.63

Panel B: CAPM alphas
Sparsity one-way sort Concentration one-way sort

(1) (2) (3) (3)-(1) t-stat (1) (2) (3) (3)-(1) t-stat
1. Benchmark −3.15 2.29 4.78 7.92 3.11 2.62 2.43 −1.60 −4.21 −2.26
2. No level control −3.12 2.86 3.26 6.38 2.87 2.55 2.88 −1.88 −4.43 −1.97
3. All CRSP stocks −2.54 1.76 5.22 7.77 3.07 2.65 2.28 −1.39 −4.04 −2.23
4. Out of Sample 1.26 4.13 2.85 1.60 0.75 3.33 3.83 0.09 −3.24 −1.58
5. TFP from Cons. −3.35 2.06 5.00 8.35 3.06 1.54 2.58 −1.81 −3.34 −1.58
6. No TFP −3.33 2.73 4.28 7.61 2.78 2.60 2.50 −2.17 −4.77 −2.42
7. R. TFP from Cons., η = .35 −2.67 2.07 3.45 6.12 2.42 1.45 1.75 −1.89 −3.34 −1.41
8. R. TFP from TFP, η = .35 −1.73 1.59 4.26 5.99 2.42 1.26 0.86 0.57 −0.69 −0.35
9. 16-year window −2.63 2.12 4.88 7.51 2.81 3.87 1.27 −1.48 −5.35 −2.71
10. 17-year window −3.30 1.97 3.98 7.28 2.38 3.39 1.34 −2.79 −6.17 −2.57
11. 18-year window −3.68 1.70 3.04 6.72 1.98 2.26 1.23 −3.07 −5.32 −2.25
12. 19-year window −6.04 1.79 4.88 10.92 2.99 2.61 1.06 −3.66 −6.27 −2.60
13. 20-year window −3.81 2.98 4.33 8.14 2.60 2.26 2.08 −1.37 −3.63 −1.64

Panel C: Fama-French alphas
Sparsity one-way sort Concentration one-way sort

(1) (2) (3) (3)-(1) t-stat (1) (2) (3) (3)-(1) t-stat
1. Benchmark −3.21 1.47 3.84 7.04 2.91 2.00 1.64 −2.00 −4.01 −2.12
2. No level control −3.52 2.21 2.23 5.75 2.66 1.39 2.11 −2.10 −3.49 −1.58
3. All CRSP stocks −2.86 0.81 4.18 7.03 2.93 1.68 1.42 −1.90 −3.57 −1.97
4. Out of Sample −1.66 1.47 0.48 2.13 1.02 0.26 1.39 −2.59 −2.85 −1.45
5. TFP from Cons. −3.48 1.40 3.87 7.34 2.79 0.64 1.92 −2.19 −2.83 −1.34
6. No TFP −3.38 1.96 3.08 6.46 2.46 1.90 1.82 −2.58 −4.49 −2.25
7. R. TFP from Cons., η = .35 −2.60 1.20 2.37 4.97 2.08 0.37 1.01 −1.90 −2.28 −0.99
8. R. TFP from TFP, η = .35 −1.80 0.81 3.05 4.85 2.00 0.35 0.44 0.13 −0.22 −0.11
9. 16-year window −2.77 1.41 4.06 6.83 2.85 3.34 0.63 −2.04 −5.39 −2.71
10. 17-year window −3.51 1.47 3.26 6.77 2.36 2.72 0.97 −3.35 −6.07 −2.54
11. 18-year window −3.61 1.65 2.36 5.98 1.89 1.71 1.05 −3.37 −5.07 −2.16
12. 19-year window −5.25 2.23 4.21 9.46 2.82 2.02 1.03 −3.26 −5.28 −2.23
13. 20-year window −2.66 2.80 3.36 6.02 2.03 0.96 1.34 −0.71 −1.67 −0.77
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Table 8: Average β correlations

This Table reports the time series average of the cross section correlation between the βs estimates for all 13 specifications of
Table 7.

Avg. Corri
(
βNS ,t, βNC,t

)
Avg. Corri

(
βNS ,t, βe,t

)
Avg. Corri

(
βNC,t, βe,t

)
1. Benchmark −0.14 0.14 −0.20
2. No level control −0.22 0.38 −0.09
3. All CRSP stocks −0.13 0.21 −0.19
4. Out of Sample −0.10 0.29 −0.24
5. TFP from Cons. −0.09 0.36 0.18
6. No TFP −0.14 – –
7. TFP from Cons., η = .35 −0.79 0.78 −0.98
8. TFP from GDP, η = .35 −0.82 0.80 −0.98
9. 16-year window −0.14 0.11 −0.16
10. 17-year window −0.14 0.08 −0.12
11. 18-year window −0.13 0.04 −0.07
12. 19-year window −0.11 −0.01 −0.02
13. 19-year window −0.07 −0.09 −0.02

Table 9: Double Sort on Sparsity and Other Factors

I construct double sorted portfolios using stocks sorted on sparsity-beta and on another factor. This Table reports average
excess return, post sample CAPM alphas and post sample Fama French alphas for the portfolio long on the high sparsity-beta
and short on the low sparsity-beta. I consider 7 different factors for the double sort: (1) market value, (2) book to market ratio,
(3) total volatility, (4) idiosyncratic volatility from CAPM model (std over 1 year of daily data), (5) idiosyncratic volatility
from Fama French three-factor model (std over 1 year of daily data), (6) volume, and (7) turnover.

Returns αCAPM αFF
(3)-(1) t-stat (3)-(1) t-stat (3)-(1) t-stat

1. Market Value L 0.61 0.15 0.25 0.06 0.68 0.17
M 1.90 0.74 1.29 0.50 2.07 0.81
H 6.04 2.23 8.01 3.10 7.14 2.90

2. Book to Market L 5.02 1.66 6.98 2.39 5.78 2.07
M 4.87 1.58 6.33 2.07 6.44 2.16
H 1.90 0.45 4.00 0.95 3.88 0.92

3. Total Vol L 5.33 2.05 7.00 2.78 6.15 2.52
M 6.97 1.86 7.89 2.09 7.50 1.99
H 6.63 0.88 8.84 1.17 10.64 1.40

4. Idiosyncratic Vol (CAPM) L 5.59 2.07 7.39 2.83 6.37 2.58
M 3.70 0.96 5.18 1.35 5.69 1.48
H 2.95 0.38 4.68 0.61 5.96 0.77

5. Idiosyncratic Vol (FF) L 5.93 2.19 7.70 2.94 6.73 2.70
M 0.85 0.21 2.60 0.65 2.83 0.70
H 1.37 0.19 3.13 0.43 4.05 0.55

6. Volume L 0.27 0.09 0.13 0.04 0.45 0.15
M 3.04 1.30 2.93 1.23 3.66 1.58
H 5.93 2.17 7.91 3.03 7.03 2.83

7. Turnover L 8.74 2.71 10.43 3.29 9.48 3.00
M 0.97 0.32 2.74 0.93 1.50 0.55
H 6.74 1.75 7.56 1.95 7.44 1.93

68



Table 10: Double Sort on Concentration and Other Factors

I construct double sorted portfolios using stocks sorted on concentration-beta and on another factor. This Table reports average
excess return, post sample CAPM alphas and post sample Fama French alphas for the portfolio long on the high concentration-
beta and short on the low concentration-beta. I consider 7 different factors for the double sort: (1) market value, (2) book to
market ratio, (3) total volatility, (4) idiosyncratic volatility from CAPM model (std over 1 year of daily data), (5) idiosyncratic
volatility from Fama French three-factor model (std over 1 year of daily data), (6) volume, and (7) turnover.

Returns αCAPM αFF
(3)-(1) t-stat (3)-(1) t-stat (3)-(1) t-stat

1. Market Value L −4.24 −1.05 −4.05 −0.99 −3.79 −0.91
M −1.11 −0.43 −1.88 −0.72 −2.05 −0.79
H −3.90 −2.09 −4.15 −2.20 −4.03 −2.11

2. Book to Market L −4.62 −1.91 −4.79 −1.96 −4.94 −2.00
M −2.29 −1.02 −2.95 −1.31 −3.23 −1.43
H −4.11 −1.19 −5.38 −1.56 −6.27 −1.82

3. Total Vol L −4.18 −2.22 −4.40 −2.32 −4.64 −2.43
M −1.17 −0.30 −0.99 −0.25 0.81 0.21
H −11.74 −1.44 −14.93 −1.84 −14.62 −1.81

4. Idiosyncratic Vol (CAPM) L −4.24 −2.29 −4.57 −2.44 −4.59 −2.43
M 0.26 0.07 0.53 0.14 1.96 0.53
H −7.18 −0.84 −10.86 −1.28 −8.99 −1.07

5. Idiosyncratic Vol (FF) L −4.26 −2.31 −4.58 −2.45 −4.65 −2.46
M 1.94 0.51 2.10 0.55 3.84 1.03
H −6.02 −0.69 −9.97 −1.15 −8.22 −0.95

6. Volume L −0.62 −0.19 −1.33 −0.42 −1.42 −0.44
M −0.79 −0.35 −1.22 −0.53 −1.53 −0.66
H −3.86 −2.05 −4.04 −2.12 −3.90 −2.02

7. Turnover L −6.00 −2.17 −7.00 −2.54 −6.59 −2.36
M −1.96 −0.83 −2.37 −0.99 −1.93 −0.81
H −4.73 −1.17 −3.62 −0.90 −3.68 −0.91
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