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1 Introduction

The problem of endogeneity occupies a substantial amount of research in theoretical and

applied econometrics. One of the most popular approaches to solve endogeneity is the in-

strumental variables (IV). The solution relies on exogenous information derived from an

additional exclusion restriction, and requires the additional variables (instruments) to be

correlated with the endogenous variable and uncorrelated with the unobserved causes of the

response variable. However, in many empirical applications, there are frequently disagree-

ment and concerns about the IV selection. The potential IV are often argued to be invalid

since they are still correlated with the error term (see, e.g., Bound, Jaeger, and Baker, 1995;

Hahn and Hausman, 2002). For example, consider the following model

y = γ + xβ + ε,

where x = v1 + v2, ε = v2 + v3, and vj ∼ i.i.d.N(0, 1), j = 1, 2, 3. In this model, x is

correlated with ε, and hence, endogenous. Suppose, an additional variable z = v1v2 + v2
2 is

available to the researcher. The variable z is correlated with x. However, it is an invalid IV

because it is still related to ε through v2. In this paper, we propose a new method to solve

the endogeneity of x using a variable as z, which is still correlated with the error term. We

provide identification conditions under which z can be utilized to obtain consistent estimates

of β and γ.

This paper contributes to the literature by proposing a novel alternative solution to

the problem of endogeneity. In doing so, we propose a new identification condition which

explicitly models the endogeneity bias. More specifically, the conditional expectation of

the joint interaction of the endogenous variables and unobserved causes of the dependent

variable is assumed to be a function of additional observable variables. We define such

additional variables as simultaneous variables because they are simultaneously related to
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both the endogenous variable and the unobservables. Thus, we develop simple and tractable

methods for conducting estimation and inference in econometric models with endogeneity,

and allow the additional variables (the simultaneous variables) to still be correlated with the

innovation term. Given the structural model and the simultaneous variables, we establish

point identification of the parameters of interest. Motivated by the identification result we

develop an estimator that is simple to implement in practice, and establish its consistency

and asymptotic normality. In addition, we propose practical inference procedures based on

the Wald statistic, as well as a test for endogeneity.

Our framework allows for situations in which there are no valid standard IV available,

but there exist additional variables that happen to be related to the joint interaction of the

endogenous variable and the unobserved causes of the dependent variable. The intuition

on the main identification condition of the new procedure is that, by using the proposed

restriction, the econometrician is able to approximate the endogeneity bias using the simul-

taneous variables, such that after controlling for the simultaneous variables, the endogenous

variables are not related to the interaction term (between the endogenous variable and the

innovation). Thus, the endogeneity bias implied by the non-zero conditional expectation of

the interaction term can be effectively specified as a function of the simultaneous variables

only.1

Monte Carlo studies are conducted to evaluate the finite sample properties of the proposed

estimator. The experiments suggest that when simultaneous variables are available, the

proposed method produces consistent estimates under the required assumptions. Moreover,

the simulations highlight the differences between the simultaneous variables approach and

the IV method. The results suggest that when only simultaneous variables exist, our method

1Strictly speaking, neither the IV or simultaneous method is more general than the other because the
underlying assumptions are non-nested. They differ in the characteristics of the additional variables; in IV
case these cause the endogenous variable only, while in our proposed method they are allowed to affect the
joint interaction of the endogenous variable and error term.
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is able to eliminate the endogeneity bias while the IV returns significantly biased estimates.

The new procedures provide intuitive and practical ways of handling the problem of

endogeneity in empirical settings. To motivate and illustrate the applicability of the iden-

tification and estimator, we apply the methods to an investment equation model where

measurement errors are a relevant concern. In particular, we consider the Fazzari, Hubbard,

and Petersen’s (1988) investment equation model, where a firm’s investment is regressed on

observed investment demand (Tobin’s q) and cash flows. Concerns about measurement er-

rors in Tobin’s q have been emphasized in the empirical investment equation models context

(see e.g., Hayashi, 1982; Poterba, 1988) because researchers only observe average q instead

of marginal q. Hence, the measurement errors induce endogeneity in the independent vari-

ables, and consequently bias in their estimates. We show that our proposed methods are

well suited to solve the existing measurement error problem in this literature. It has been

common in the literature to employ IV methods using the lags of q as instruments to re-

solve the endogeneity problem (see e.g., Almeida, Campello, and Galvao, 2010; Lewellen and

Lewellen, 2014). However, the approach of using lagged q as IV fails when the measurement

errors on the marginal q are systematic. In practice, it is highly likely that current-period

measurement error is correlated with the first-order or higher-order lags of the measurement

error. This phenomenon of autocorrelation in the measurement errors seems to be more re-

alistic in practice because systematic errors on a way of evaluating average q would be highly

likely to be persistent. Contrary to the IV, we show that even under the assumption that

the marginal q and measurement error are correlated, the lagged Tobin’s q and its square are

valid simultaneous variables because they are related to the interaction of the endogenous

variable q and the error term. Thus, we can use these simultaneous variables to remove

the bias from the measurement error and obtain consistent estimates for the parameters of

interest. For comparison, we estimate the model using OLS, IV and simultaneous variables
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estimators. Our empirical findings support the idea that the simultaneous variable estimator

is a useful alternative to instrumental variables models.

The proposed methods relate to recent advances in the literature on various alternative

estimation and inference procedures that attempt to solve endogeneity without standard

instrumental variables. In a recent paper, Conley, Hansen, and Rossi (2012) present practical

methods for performing inference while relaxing the IV exclusion restriction. They use prior

information regarding the extent of deviations from the exact exclusion restriction. Chalak

and White (2011) define a new class of extended IV, and introduce notions of conditioning

and conditional extended IV which allow use of non-traditional instruments, as they may be

endogenous. Chalak (2012) achieves identification of parameters by employing restrictions

on the magnitude and sign of confounding instead of using traditional IV. Nevo and Rosen

(2012) provide bounds for the parameters when the standard exogeneity assumption on IV

fails, by assuming the correlation between the instruments and the error term has the same

sign as the correlation between the endogenous regressor and the error term and that the

instruments are less correlated with the error term than is the endogenous regressor. Gandhi,

Kim, and Petrin (2013) propose a generalized control function approach for models where the

endogenous variables interact with the error term. Caetano (2015) develops an interesting

test procedure for exogeneity of explanatory variables without relying on IV. The test rests

on an assumption that the structural function needs to be continuous in the explanatory

variable of interest, but it does not require the structural function to be identified under

either the null or the alternative hypotheses.

The paper is organized as follows. Section 2 presents the econometric model, the identi-

fication results, and comparison with IV method. Section 3 proposes a consistent estimator,

establishes its asymptotic properties, and develops inference procedures. Section 4 presents

extensions to nonparametric model and a case of general form of endogeneity. Section 5
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studies the finite sample performance of the proposed estimator. Section 6 applies the esti-

mator to the investment equation model. Finally, Section 7 concludes the paper. Technical

proofs and extension to multiple endogenous variables are included in the Appendix.

2 Modeling endogeneity using observables

In this section, we propose a new methodology to solve the endogeneity bias problem. Iden-

tification of the parameters of interest is achieved by modeling the endogeneity bias through

a novel additional equation. We also compare the proposed method with the IV framework.

2.1 The model

Consider the following structural model

E[yi|x1i,x2i] = f(x1i,x2i), i = 1, ..., n, (1)

where yi is a scalar dependent variable, x1i is a p1-vector of exogenous explanatory variables,

x2i is a p2-vector of endogenous regressors, and f(·, ·) is an unknown measurable function.

Define xi = [x1i,x2i] as a (p1 + p2)-vector with the sample covariates. The main focus of

this paper is endogeneity and its solution.

For motivation and exposition purposes, we primarily investigate the endogeneity problem

in linear regression models. Nevertheless, the results generalize to nonparametric models (see

Section 4.1 below for details). Equation (1) can be written as

yi = x1iβ1 + x2iβ2 + εi, i = 1, ..., n, (2)

where β1 is a p1-vector, β2 is a p2-vector, and εi is a scalar innovation term. Define β =

[β>1 ,β
>
2 ]>. We assume that x2i is endogenous, and correlated with the innovation term εi in

(2), such that E[x>2iεi] 6= 0. In addition, x1i is exogenous with E[x>1iεi] = 0. Thus, we also

6



assume that

1

n

n∑
i=1

x>i εi
p→ E[x>ε] ≡ B = [0>,B>2 ]>,

withB a (p1+p2)-vector (finite), and 1
n

∑n
i=1 x

>
i xi

p→ E[x>x] ≡ C (finite and non-singular).

The endogeneity in x2 produces an endogeneity bias, the term B, in the standard OLS es-

timator, β̂OLS = ( 1
n

∑n
i=1 x

>
i xi)

−1 1
n

∑n
i=1 x

>
i yi. Simple algebra and asymptotic calculations

show that β̂OLS1

p→ β1 −C−1
11 C12δ2, and β̂OLS2

p→ β2 + δ2, where δ2 = V −1
2·1 B2. Note that if

the endogeneity term B were known, then the correct estimating equation would be

1

n

n∑
i=1

x>i (yi − xiβ) = B, (3)

and its solution is β̃ = ( 1
n

∑n
i=1 x

>
i xi)

−1 1
n

∑n
i=1(x>i yi − B) = β̂OLS − ( 1

n

∑n
i=1 x

>
i xi)

−1B.

However, since theB is unknown, to solve the endogeneity problem we will instead model the

interaction of the endogenous variable and the error term, x2iεi and establish identification

of β under some mild conditions. For simplicity, throughout we consider the case where

p2 = 1, i.e., there is only one endogenous variable, x2i. The extension to multiple endogenous

variables is derived in Appendix B.

2.2 Identification

Identification of the parameters of interest is achieved by explicitly modeling the interaction

of the endogenous variable and the unobserved causes of the dependent variable as a function

of additional observable variables. In particular, motivated by equation (3), we consider the

case where the variable x2ε can be modeled using additional variables. The following equation

formalizes modeling endogeneity

E(x2ε | z,x) = g(z), (4)

where g(·) is an unknown smooth function and z a k-vector of additional observable variables.

This is a general formulation to model the endogeneity in the linear parametric model. A
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more general form of endogeneity which takes into account nonlinear dependence between

these two variables is considered in Section 4.2 below. For simplicity, assume that g(·) is a

known function of z with unknown parameters φ such as g(z;φ), but the analysis can be

easily extended to the case of unknown functional form of g(·) which is discussed in Section

4.1. For notational simplicity, we suppress the subscript i whenever there is no confusion.

A simple example of (4) that is convenient for exposition and estimation purposes is the

following polynomial of z,

E(x2ε | z,x) = Zφ, (5)

where Z = [1, z, z2, . . . ,zm] and φ = [φ0,φ
>
1 , . . . ,φ

>
m]> which is a nonzero vector.2 Equation

(5) is explicitly modeling the endogeneity of x2. In this case, by modeling endogeneity

we mean to model the term x2ε. When φ 6= 0, we can interpret the exogenous variable

z as a noisy measure of the common cause(s) of x2 and ε, which is related to the joint

interaction of the endogenous variable and the unobservables. Our identification strategy

requires observable variables, z. We define such variables as simultaneous variables because

they are simultaneously related to x2 and ε.

We are interested in identifying and estimating the parameters β in equation (2). In

practice, φ is unknown, and it is important to note that this parameter cannot be directly

estimated from equation (5) because ε is unobservable. Hence, we consider the joint iden-

tification and estimation of both β and φ. To this end, we impose restrictions on the

relationship between the endogenous regressor and the simultaneous variables.

Define θ ≡ [β>1 ,α
>]> with α ≡ [β>2 ,φ

>]>. To ease the notation, define ỹ and x̃2 after

netting out the exogenous regressor x1 and multiplying the resulting objects by x2. Thus,

ỹ = x2(y−x1E(x>1 x1)−1E(x>1 y)) and x̃ = [x̃2,Z], with x̃2 = x2(x2−x1E(x>1 x1)−1E(x>1 x2)).

2One might want to approximate the unknown function g(·) with one of the sieve bases (e.g., power series,
Fourier series, splines, etc.). See, e.g., Chen (2007) for more details on the method of sieve.
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Let z̃ be a set of variables induced by conditioning variables [z,x]. Consider the following

assumptions.

Assumption 1

(i) E(x>1 ε) = 0;

(ii) E(x2ε | z,x) = Zφ.

Assumption 2 E(x>1 x1) and E(z̃>x̃) are non-singular.

Assumptions 1 and 2 allow us to identify the parameters of interest. Assumption 1 (i)

simply states that x1 are exogenous regressors. Assumption 1 (ii) is the main identification

condition. It is new in the literature and deserves further discussion. Condition 1 (ii) ex-

plicitly models the interaction between the endogenous variable and the unobserved causes

of the dependent variable using a parametric model specification. It states that the simulta-

neous variables are able to capture the information on the endogeneity term. The intuition

behind this assumption is that once one controls for the simultaneous variables (z), x is

not related to the interaction term x2ε. In other words, the endogeneity bias implied by the

non-zero conditional expectation of the interaction term can be specified as a function of the

simultaneous variables only.

It is important to notice the restriction this assumption imposes relative to the litera-

ture. The simultaneous variables model allows for dependence between the error term and

simultaneous variables at the expense of restricting the interaction between the endogenous

regressor and the error term being a function of the simultaneous variables only. In contrast,

the IV model requires dependence between the endogenous regressor and the instrumental

variables, which are restricted to be uncorrelated with the error term. Therefore, the new

method is able to allow the additional variables to still be correlated with the error term
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at the cost of requiring the interaction not to be related to the endogenous variable. As

a result, the difference between our proposed model and traditional IV approach rests on

different model specifications; researchers fail to identify parameters if an incorrect method

is employed to control for the endogeneity in each case.

Assumption 1 (ii) can be interpreted in an alternative form. In particular, it can be

restated as

x2ε = Zφ+ u, with E(u | z,x) = 0. (6)

This format provides an auxiliary equation which models endogeneity bias using simultaneous

variables, and the condition E(u | z,x) = 0 states that the innovation u should have

conditional mean zero given z and x. This requirement relates to standard exogeneity

condition in the IV literature, which requires that the innovation term in the first-stage

equation needs to be uncorrelated with instrumental variables.3

Although the condition φ 6= 0 is not a formal requirement, it implicitly arises because of

the fact that if φ = 0, there is no endogeneity problem and the whole exercise is unnecessary.

Assumption 2 is a standard rank condition. Non-singularity of E(x>1 x1) is necessary for the

identification of β1 and non-singularity of E(z̃>x̃) is required for the identification of α.

The later states that the simultaneous variables are not linearly related to the endogenous

regressor.

To motivate our approach and fix the ideas, we consider the following simple example.

We discuss the previous assumptions and heuristically show how they deliver identification

of the parameters of interest. Let

y = γ + xβ + ε,

3One can also notice yet another additional interpretation of the main identification condition. When
the correlation between x2 and ε is modeled, Assumption 1 (ii) can be rewritten as x2E(ε | z,x) = Zφ,
hence, we have E(ε | z,x) = Z

x2
φ. Therefore, the conditional expected value of the unobserved error term is

a function of the “normalized” simultaneous variables by the endogenous variable , i.e., Z
x2

.
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where x is endogenous, i.e. E[xε] 6= 0. Note that there are no exogenous regressors for

simplicity. Multiplying both sides of the structural model by x we have

xy = xγ + x2β + xε.

In this simple example, Assumption 1 (ii) can be restated as E(xε | x, z) = Zφ. The

previous equation for xy can be written as

E(xy − xγ − x2β | x, z) = Zφ.

As a result, Assumption 1 (ii) provides a moment condition such as

E(z̃>(xy − xγ − x2β −Zφ)) = 0,

where z̃ is a set of variables generated by the conditioning variables. By selecting z̃ ≡

[x, x2,Z], for instance, we have

E([x, x2,Z]>(xy − xγ − x2β −Zφ)) = 0.

By rearranging the above equation, we obtain

E(z̃>ỹ) = E(z̃>x̃)α,

where ỹ ≡ xy, x̃ ≡ [x, x2,Z] and α ≡ [γ, β,φ]>. Finally, by Assumption 2, E(z̃>x̃) is

invertible, and α can be uniquely identified as

α = E(z̃>x̃)−1E(z̃>ỹ).

In this simple illustration, the first condition used to derive identification is that the interac-

tion of x and ε can be modeled by observables z. The second condition states that z cannot

be linearly related to x and x2 by the invertibility condition on E(z̃>x̃).

We now return to the general structural equation (2) and general identification. For

the sake of clarity, we first focus on exactly identified model motivated by the conditional
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moment restriction of equation (5).4 We consider the over-identified case in Section 4.2

below. The following theorem formalizes the identification results of θ, with θ ≡ [β>1 ,α
>]>

and α ≡ [β>2 ,φ
>]>.

Theorem 1 Suppose Assumption 1 holds. Then, θ is fully identified with

α = E(z̃>x̃)−1E(z̃>ỹ), β1 = E(x>1 x1)−1E(x>1 y)− E(x>1 x1)−1E(x>1 x2)β2,

if and only if Assumption 2 holds.

Proof. In Appendix A.

In practice, the choice of the simultaneous variables is an important problem. The set of

variables included in Z is crucial, and the economic theory along with empirical findings can

be applied to guide the selection of the simultaneous variables and why the identification

assumptions are satisfied in each case.

2.3 Comparison with IV approach

This section discusses the differences between the proposed simultaneous variables and the

IV approaches. Suppose that x2 is endogenous in (2). For the standard IV case, in the

first-stage we have

x2 = x1π1 + zπ2 + w,

where w is an unobserved component. The instrumental variable, z, is a valid instru-

ment when it satisfies two conditions. First, it is correlated with the endogenous variable,

Cov(x2, z) 6= 0, after partialling out x1. Second, the instrument is required to be uncorre-

lated with the unobserved causes of the dependent variable, E(ε | z) = 0, after partialling

4Based on E(ρ(x2ε,Z;θ) | z,x) = 0, where ρ(·, ·;θ) = x2(y − xβ) − Zφ, we obtain the orthogonality
condition E(z̃ρ(x2ε,Z;θ)) = 0. A consistent estimator of θ can be achieved by imposing the sample analogue
of the population orthogonality condition.
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out x1.5 Assumption 1 (ii) plays a similar role to the first IV condition above such that

an instrumental variable should be related to the endogenous variable, i.e. π2 6= 0. The

proposed method, however, requires the simultaneous variables to capture information on

the interaction term. In addition, the IV requires that E(w | x1, z) = 0. This is similar to

the simultaneous variables condition presented in equation (6), E(u | x, z) = 0.

Regarding the second IV restriction, E(ε | z) = 0, when it is violated, the IV approach

fails to solve the endogeneity problem. However, under the assumptions for our methodology

z could still be used as a simultaneous variable to control for endogeneity. Assumption 1 (ii)

allows z to be correlated with the unobserved causes of the dependent variable, ε, by explicitly

modeling the endogeneity. The main trade-off is that the simultaneous variables method

requires the interaction between the endogenous regressor and the error term to be a function

of the simultaneous variables only. Our approach is also different from the conditioning

instrumental variables in the model of Chalak and White (2011), where in this case x2 and ε

would be uncorrelated once we condition on this type of extended instrument. Furthermore,

our method relies on different model and assumptions than the proxy variable approach. In

the proxy variables approach, condition E[ε | x, z] = g(z) controls for endogeneity of x2

through the equation y = x1β1 + x2β2 + g(z) +w, where E[w | x, z] = 0. It is worth noting

that our condition E[x2ε | x, z] = g(z) is instead based on the interaction between x2 and ε.

3 Estimation and inference

In this section, we develop a simultaneous variables estimator and present the details on its

practical implementation. We then study its asymptotic properties by establishing consis-

tency and asymptotic normality. We also develop inference procedures based on the Wald

5Strictly speaking, E(εz) = 0 is sufficient for the linear IV model. Similarly, Assumption 1 (ii) for the
proposed model can be relaxed to weaker condition which is written as unconditional expectation. But the
conditional version is adopted for better motivation and coherence.
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statistic. Finally, we propose a simple test for endogeneity.

3.1 Estimation

Given the identification result in Theorem 1, we are able to estimate the parameters of

interest. We construct an estimator which is simple to implement in practice. Recall that

θ ≡ [β1,α]> with α ≡ [β2,φ]>. An estimator of θ is as following

α̂ =

(
1

n

n∑
i=1

z̃>i x̂i

)−1(
1

n

n∑
i=1

z̃>i ŷi

)
, (7)

β̂1 =

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1iyi

)
−

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
β̂2, (8)

where z̃ is the set of variables generated by conditioning variables, x̂ and ŷ are sample

analogs of x̃ and ỹ, which are obtained by replacing the expectations with sample means,

and where β̂2 is the first element of α̂.

The implementation of the proposed estimator in practice is simple and can be carried

through a sequence of OLS estimations as follows. First, compute the variables x̂ and ŷ. To

calculate ŷ, one first partials out the exogenous regressors by computing the errors from a

OLS regression of y on x1, then multiply those by x2. Computation of x̂ is analogous. Second,

estimate α̂ using equation (7) and z̃, the set of variables generated by the conditioning

variables. Finally, given α̂ and consequently β̂2, β̂1 can be estimated from OLS as in equation

(8), by using the coefficients of the OLS regression of y on x1 and also the coefficients of the

regression of x2 on x1. These generated variables affect the asymptotic variance-covariance

matrix (see e.g. Pagan, 1984), as shown in the derivation of the asymptotic normality below.

3.2 Asymptotic theory

Now we establish the asymptotic properties of the estimator described above. In particular,

we show its consistency and asymptotic normality. Denote Q ≡ E(z̃>i x̃i), C1 ≡ E(x>1ix1i),
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and C2 ≡ E(x>1ix2i). The limiting behavior of the estimator is summarized in the following

result.

Theorem 2 Let assumptions of Theorem 1 hold and the observations {(yi,xi,Zi); i = 1, 2, ..., n}

be i.i.d. across i and their fourth moments exist, i.e., E(‖yi‖4) < ∞, E(‖xi‖4) < ∞, and

E(‖Zi‖4) <∞. Then, as n→∞,

α̂
p→ α.

In addition, we have that

√
n(α̂−α)

d→ N(0, Q−1MQ−1),

with M = V ar(z̃>u − Gr(δ) + Hs(γ)), where G, r(δ), H, and s(γ) are defined in the proof.

Moreover,

β̂1
p→ β1,

and

√
n(β̂1 − β1)

d→ N(0,C−1
1 C2Vβ2C

>
2 C

−1
1 ),

where Vβ2 is the variance of β̂2.

Proof. In Appendix A.

The results given in Theorem 2 show that the limiting distribution of the proposed

estimator is standard. This result is the foundation for construction of inference procedures.

3.3 Inference

Inference is very important in practice. Given the results in Theorem 2, general hypotheses

on the vector θ can be accommodated by Wald-type tests. We focus on linear restrictions.

The Wald statistic and associated limiting theory provide a natural foundation for testing
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hypotheses as Rθ = r, where R is a full-rank matrix imposing q restrictions on the pa-

rameters, and r is a column vector of q elements. The Wald statistic can be constructed

as

Wn = n(Rθ̂ − r)>[RΩ̂R>]−1(Rθ̂ − r), (9)

where Ω̂ is a consistent estimator of the variance-covariance matrix of Ω.

Under the null hypothesis H0 : Rθ = r, the statistic Wn is asymptotically χ2
q with q-

degrees of freedom, where q is the rank of the matrix R. The limiting distribution of the

test is summarized in the following result.

Corollary 1 Under H0 : Rθ(τ) = r, and the conditions of Theorem 2,

Wn
a∼ χ2

q.

Proof. Given a consistent estimator Ω̂, the proof is a direct application of Theorem 2.

In practice, to carry inference and apply a Wald test in (9) one needs a consistent

estimator of the asymptotic variance-covariance matrix. As described in the above re-

sult, to estimate the asymptotic variance-covariance matrix, we need to estimate both

V ar(α̂) = Q−1MQ−1/n and V ar(β̂1) = C−1
1 C2Vβ2C

>
2 C

−1
1 /n. The later is easily recovered

from its sample counterparts, that is, Ĉ1 = n−1
∑n

i=1 x
>
1ix1i and Ĉ2 = n−1

∑n
i=1 x

>
1ix2i. Now,

notice that V̂β̂2 is the first element of the variance-covariance matrix V̂ ar(α̂). Finally, for the

estimation of the variance-covariance matrix of α̂ one can consider its sample counterpart

such as V̂ ar(α̂) = Q̂−1M̂Q̂−1/n with

Q̂ =
1

n

n∑
i=1

z̃>i x̂i,

M̂ =
1

n

n∑
i=1

(
z̃>i ûi − Ĝr̂i(δ) + Ĥŝi(γ)

)(
z̃>i ûi − Ĝr̂i(δ) + Ĥŝi(γ)

)>
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where

ûi = ŷi − x̂iα̂,

Ĝ =
1

n

n∑
i=1

(z̃>i ∇δx̃iα̂) =
1

n

n∑
i=1

(z̃>i [−x2ix1i, 0, 0]α̂),

Ĥ =
1

n

n∑
i=1

(z̃>i ∇γ ỹi) =
1

n

n∑
i=1

(z̃>i (−x2ix1i)),

r̂i(δ̂) =

(
1

n

n∑
i=1

x>1ix1i

)−1 (
x>1i(x2i − x1iδ̂)

)
,

ŝi(γ̂) =

(
1

n

n∑
i=1

x>1ix1i

)−1 (
x>1i(yi − x1iγ̂)

)
,

δ̂ =

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
,

and

γ̂ =

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1iyi

)
.

The practical estimation of these quantities is simple. As for the point estimates, it only

relies on simple OLS regressions.

3.4 Endogeneity test

When x2 and ε in equation (2) are correlated, the usual OLS estimator is inconsistent. Thus,

it is necessary to resort to estimators discussed in (7) and (8) above. In this subsection we

consider a test for exogeneity of x2 based on classical principles, as in Rivers and Vuong

(1988).

To test exogeneity we consider the null hypothesis of H0 : φ = 0. This is a joint test for

the coefficients φ in the simultaneous variables model. Notice that under the null hypothesis,
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from Assumption 1 (ii) and the law of the iterated expectations, E(x2ε) = 0, and therefore,

there is no endogeneity problem. Thus, the modified Wald statistic we consider is given by

TE = nφ̂>V̂ (φ̂)φ̂, (10)

where V̂ (φ̂) is a consistent estimator of the variance-covariance matrix corresponding to φ̂,

and φ is estimated by the simultaneous variables estimator.

Following Rivers and Vuong (1988), under the null hypothesis the test statistic in (10)

has an asymptotic central chi-square distribution with m degrees of freedom, where m is the

number of simultaneous variables included in the estimation equations (7) and (8).

4 Extensions

4.1 Nonparametric model

We have focused on a simple linear parametric model for the sake of clear exposition and

motivation. Nevertheless, the model we consider can be extended to more general additively

separable nonparametric models. The structural model (1) is now rewritten as

yi = f(x1i, x2i) + εi, i = 1, ..., n, (11)

where x2 is endogenous and ε is an innovation term. Then, from the equations (4) and (11)

we obtain

E(x2(y − f(x1, x2)) | z,x) = g(z),

or

E(x2y | z,x) = f̃(x1, x2) + g(z) (12)

= h(w),

where f̃(x1, x2) ≡ x2f(x1, x2) and w ≡ [x1, x2, z]. This implies that the function f̃(x1x2),

can be obtained from an additive regression of x2y on (x1, x2) and z. Thus, identification of
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the function of interest, f(x1, x2), rests on the identification of f̃(x1, x2) through f(x1, x2) =

f̃(x1, x2)/x2.

Identification of f̃(x1, x2) can be analyzed by a similar argument of Theorem 2.1 in Newey,

Powell, and Vella (1999). To be specific, uniqueness of a conditional expectation is equivalent

to the statement that any additive function f̃ ∗(x1, x2) + g∗(z) satisfying equation (12) must

have Prob(f̃ ∗(x1, x2) + g∗(z) = f̃(x1, x2) + g(z)) = 1. Thus, identification implies equality

of the additive components up to a constant. Intuitively speaking, failure of identification

implies a functional relationship between the random vector (x1, x2) and z. Therefore, a

sufficient condition for identification is the absence of an exact relationship between these

random variables. We summarize the identification result in the following Lemma.

Lemma 1 f̃(x1, x2) is identified, up to an additive constant, if and only if Prob(δ(x1, x2) +

λ(z) = 0) = 1 implies there is a constant cf with Prob(δ(x1, x2) = cf ) = 1.

Proof. The result follows from a similar argument to Theorem 2.1 in Newey, Powell, and

Vella (1999).

4.2 General forms of endogeneity

We have characterized the endogeneity based on the linear dependence (i.e., expectation of

the product of x2 and ε). More generally, modeling endogeneity can be defined in terms

of any nonlinear dependence between x2 and ε. To be precise, instead of equation (4), we

assume

E(Λ(x2, ε;β) | z,x) = g(z;φ), (13)

where Λ(x2, ε;β) is a known measurable function of (x2, ε) up to an unknown vector of

parameters β and where g(z;φ) is a known measurable function of z up to an unknown
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vector of parameters φ. We focus on a nonlinear parametric model as follows:

yi = f(x1i, x2i;β) + εi, i = 1, ..., n,

where f(x1, x2;β) is a known measurable function of (x1, x2) up to an unknown vector of

parameters β.

Let Ψ(y,x, z;θ) ≡ Λ(x2, y−f(x1, x2;β);β)−g(z;φ) with θ ≡ [β>,φ>]>. Then equation

(13) can be rewritten as the following moment condition,

E(Ψ(y,x, z;θ) | z,x) = 0.

Therefore, the orthogonality conditions can be rewritten as

E(z̃Ψ(y,x, z;θ)) = 0, (14)

where z̃ is a set of variables generated by the conditioning variables (z,x). It is important to

notice that the model in equation (14) allows for over-identified models where the dimension

of z̃ is larger than the dimension of regressors. Assuming global identification of parameters

and full rank condition for matrices associated with Assumption 2, a minimum-distance

estimator of the parameter θ based on equation (14) is obtained by solving the following

minimization problem

θ̂ ≡ argminθnhn(vi;θ)>Ŵhn(vi;θ),

where Ŵ is a consistent estimator of a positive definite matrix W , v ≡ [y,x, z], and

hn(vi;θ) =
1

n

n∑
i=1

z̃iΨ(yi,xi, zi).

Asymptotic properties of the above estimator can be established by using standard econo-

metric results (see, e.g., Newey, 1990).
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5 Monte Carlo simulations

We use simulation experiments to assess the finite sample performance of the proposed si-

multaneous variables (SV) estimator. For comparison, we also report results for the standard

ordinary least squares (OLS) and the instrumental variables (IV) estimators. The result-

ing estimates are compared in terms of bias, median absolute deviation (MAD) and root

mean square error (RMSE). The simulation experiments are based on 5,000 replications and

sample sizes of n ∈ {100, 200, 500, 1000}.

We consider a simple data generating process (DGP) as

yi = β0 + β1x1i + β2x2i + εi, i = 1, 2, ..., n,

with β0 = β1 = β2 = 1, with covariates generated as x1 = v1 + v2 and x2 = v2 + v3, where

vj ∼ i.i.d.N(0, 1), j = 1, 2, 3.

First, we generate a model to evaluate the relative performance of the SV estimator when

both x1 and x2 variables are exogenous. Thus, there is no need to correct for endogeneity.

In this case we generate ε = v4, v4 ∼ i.i.d.N(0, 1), such that there is no correlation between

ε and x1 or x2. In this scenario, we expect the standard OLS estimator, which does not

make use of any additional variables for estimation, of both β1 and β2 to be approximately

unbiased. Both the SV and IV use additional variables. So, we construct different sets

of variables to study these estimators. In all the simulation experiments, the structural

equation is kept the same and the SV and IV models differ only in the DGP of z. In this

first set of simulations, two different cases are considered. We construct a simultaneous

variable zsv = v2v4 + v5 (Model SV), and an instrumental variable ziv = v2 + v5 (Model IV),

where v5 ∼ i.i.d.N(0, 1). Then, we use the two variables, {zsv, ziv}, alternatively for the

different estimators, that is, in the role of SV or IV for both estimators. It is important to

notice that zsv contains v2 and v4 and hence is correlated with x2ε. The rationale for such an
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experiment is to evaluate what would be the effect of using a variable for the corresponding

estimator and (wrongly) for another estimator, when there is no endogeneity.

Table 1 reports the simulation results for β2 for this case. Note that all estimators are

unbiased and consistent when the correct variable is used. As expected OLS is consistent,

but also is the SV estimator when zsv is used as simultaneous variable and IV when ziv is

used as instrument. Also note that the SV estimator is also consistent when any variable is

used, i.e. {zsv, ziv}. However, the IV estimator only works when a proper instrument is used,

and produces biased estimates with significant variance when an incorrect instrument is used

instead. That is, if we use zsv as instrument, then by construction, it is not correlated with

x2 (that is, Cov(zsv, x2) = Cov(v2v4 + v5, v2 + v3) = 0), and then the IV estimator variance

is large with a consequent effect on MAD and RMSE. On the other hand, SV works with

both {zsv, ziv} because it does not affect the β estimators when φ = 0.

[TABLE 1 ABOUT HERE]

Second, consider a DGP model with endogeneity. In this case, we generate the innovation

term as ε = v3 + v4, where v4 ∼ i.i.d.N(0, 1). This model induces endogeneity because

corr[x1, x2] = corr[x2, ε] = 0.5 while corr[x1, ε] = 0. Given the correlation between the

x2 regressor and the error term in the DGP, the standard OLS estimators of both β1 and

β2 should be biased, and in particular, E[β̂OLS2 ] = 5
3
> 1 so that the OLS bias is 2

3
. As

in the previous case, in all the simulation experiments, the structural equation is kept the

same and the models differ only in the DGP of z. Three different cases are considered. Let

v5 ∼ i.i.d.N(0, 1). In Model SV1, we generate a DGP following a simultaneous variable

framework. From the additional equation x2ε = v2
3 + v2v3 + v2v4 + v3v4, we set z = v2

3 + v2v3.

Note that corr[z, x2ε − z] = 0 and corr[x2
2, x2ε − z] = 0. Thus, Model SV1 satisfies the

simultaneous variables requirements, and the proposed estimator is expected to be consistent.
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In Model SV2, we consider z = 1 + x2ε + v5. In this case, z is a noisy measure of x2ε.

Finally, Model IV is designed to satisfy the IV method requirements. We construct z as

an instrumental variable such as z = v2 + v5. In this case, the IV estimator is expected to

perform the best. These simulation results (for β2) are presented in Table 2.

[TABLE 2 ABOUT HERE]

The results for models SV1 and SV2 show that, as expected, the proposed SV performs

very well in terms of bias, MAD and RMSE. The proposed estimator is approximately

unbiased, even for small sample sizes, and the bias, MAD and RMSE decrease as the sample

size increases. In contrast, OLS and IV estimators are largely biased, and their biases do

not disappear for large n. Finally, Model IV is favorable to the IV estimator. In this case,

the IV estimator is approximately unbiased while OLS and SV are not.

Overall, the results show evidence that the SV performs very well in finite sample sim-

ulations when a proper simultaneous variable is used. The SV estimator is able to reduce

the endogeneity bias when a simultaneous variable exists that is related to the joint inter-

action of the endogenous variable and the innovations. The last two experiments also show

that there are fundamental differences between our estimator and other methods for solving

endogeneity such as IV. In fact, the IV estimator works only for Model IV.

6 Empirical application: Investment equation

6.1 Investment model

To provide a formal economic framework for the discussion, we present a standard dynamic

investment model as in Abel and Eberly (1994) and Erickson and Whited (2000). The model

considers risk-neutral managers choosing investment each period to maximize the expected

present value of future profits. Capital is a quasi-fixed factor. Thus, we can write the value
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function for firm i at time t as

Vit = E

[
∞∑
j=0

(
j∏
s=1

bi,t+s

)
Π(Ki,t+j, ξi,t+j)− ψ(Ii,t+j, Ki,t+j, νt,t+j, hi,t+j)− Ii,t+j|Ωit

]
, (15)

where E is the expectation operator, Ωit is the information set of the manager of firm i at time

t, bit is the firm’s discount factor at time t; Kit is the beginning of period capital stock, Iit is

investment, Π(Kit, ξit) is the profit function, and ΠK > 0, ψ(Ii,t+j, Ki,t+j, νt,t+j, hi,t+j)−Ii,t+j

is the investment adjustment cost function, which is increasing in Iit and decreasing inKit and

convex in both arguments. The term hit is a vector of variables, such as labor productivity

that might affect adjustment costs, and ξit and νit are exogenous stocks to the prefect and

adjustment cost functions, both are observed by the manager but not by the econometrician

at time t. All variables are expressed in real terms, and the relative price of capital is

normalized to unity. We note that any variable factors of production have already been

maximized out of the problem.

The firm maximizes the value function in equation (15) subject to the following capital

stock accounting constraint

Ki,t+1 = (1− di)Kit + Iit, (16)

where di is the constant rate of capital depreciation for firm i. For simplicity, we assume

the depreciation is constant over time. Let χit be the sequence of Lagrange multipliers on

equation (16). To solve the optimization problem, the first-order condition for maximizing

the value of the firm in equation (15) subject to (16) is

1 + ψI(Iit, Kit, νit, hit) = χit, (17)

where

χit = E

[
∞∑
j=0

(
j∏
s=1

bi,t+s

)
(1− di)j−1[ΠK(Ki,t+j, ξi,t+j)− ψK(Ii,t+j, Ki,t+j, νt,t+j, hi,t+j)]|Ωit

]
.

(18)
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These equations can be interpreted economically. Equation (17) states the marginal cost

of investment equals its expected marginal benefit. The left side captures the adjustment

and purchasing costs of capital goods, and the right side represents the expected shadow

value of capital, which, as shown in (18), is the expected stream of future marginal benefits

from using the capital. These benefits include both the marginal additions to profit and

reductions in installation costs. Since we normalize the price of capital goods to unit, χit

represents the quantity “marginal q” (see e.g., Tobin, 1969).

There is a large literature testing the q theory using linear regression models with the

rate of investment on χit. These procedures require a proxy for the unobservable χit and a

functional form for the installation cost function having a partial derivative with respect to

Iit that is linear in Iit/Kit and νit. In this paper, we follow the literature and consider the

problem of obtaining χit. Moreover, we propose to approximate the cost function using a

polynomial. This is a class of functions that meets the functional form requirements and is

also linearly homogeneous in Iit and Kit. Thus, we use the following function

ψK(Ii,t+j, Ki,t+j, νt,t+j, hi,t+j) = (a1 + a2νit)Iit + a3
I2
it

Kit

+Kitf(νit, hit). (19)

Here f is an integrable function, and a1, a2, a3 are constants. It is standard to restrict a3 > 0

to ensure concavity of the value function in the optimization problem. The adjustment cost

functions chosen either explicitly or implicitly by researchers who test q theory with linear

regressions are variants of (19). Differentiating (19) with respect to Iit and substituting the

result into (17) yields the following regression equation

yit = α0 + βχit + uit, (20)

where yit ≡ Iit/Kit, α0 ≡ −(1 + a1)/2a3, β ≡ 1/2a3, and uit ≡ −a2νit/2a3.

Therefore, from the maximization of firm’s profit, and an assumption of linearly homoge-

nous cost function, we are able to derive the linear investment model. It is standard in the
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literature to augment model (20) with cash flow as a regressor. Fazzari, Hubbard, and Pe-

tersen (1988) consider an investment equation model, where a firm’s investment is regressed

on an observed measure of investment demand (Tobin’s q) and cash flow. Following Fazzari,

Hubbard, and Petersen (1988), investment–cash-flow sensitivities became a standard metric

that examines the impact of financing imperfections on corporate investment (Stein, 2003).

These empirical sensitivities are also used for drawing inferences about efficiency in internal

capital markets (Lamont, 1999; Shin and Stulz, 1998), the effect of agency on corporate

spending (Hadlock, 1998; Bertrand and Mullainathan, 2005), the role of business groups in

capital allocation (Hoshi, Kashyap, and Scharfstein, 1991), and the effect of managerial char-

acteristics on corporate policies (Bertrand and Schoar, 2003; Malmendier and Tate, 2005).

Therefore, the econometric model is represented by the following equation

yit = γ + αcit + βq∗it + ηit, (21)

where yit ≡ Iit/Kit, where I denotes investment and K capital stock, q∗ is marginal Tobin’s

q, cit ≡ CFit/Kit, where CF is cash flow, and η is the unobserved causes of the investment,

which can be interpreted as containing, among other factors, a firm specific economic shock

to investment. This shock may affect firms differently because of different perceptions on

the aggregate conjecture. As a result, η is a pure idiosyncratic shock to the investment.

6.2 Investment model with measurement errors

Concerns about measurement errors (ME) have been emphasized in the context of the in-

vestment equation model. Theory suggests that the correct measure for a firm’s investment

demand is captured by marginal q, but this quantity is unobservable and researchers use

instead its measurable counterpart, average q. Because average q measures marginal q im-

perfectly, a measurement problem naturally arises (Hayashi, 1982; Poterba, 1988).

Now we consider the structure of the ME on q∗ more carefully. We use a classical ME
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framework to formalize the discussion. Let eit denote the Tobin’s q measurement error.

Assume that eit has zero mean, finite variance σ2
e and is independent of q∗it. Thus, the

average q is given by

qit = q∗it + eit. (22)

From plugging equation (22) into the investment model in equation (21), we obtain

yit = γ + αcit + β(qit − eit) + ηit

= γ + αcit + βqit + εit, (23)

where εit ≡ ηit − βeit. Therefore, when q∗ is unobserved and a mismeasured q is used as a

regressor, ME induce endogeneity, i.e., q is correlated with ε due to ME.

Therefore, in the standard investment model in (21), if q∗ is measured with error, OLS

estimates of β will be biased. In addition, given that average q and cash flow are likely to

be correlated, the coefficient α is likely to be biased as well. These biases are expected to

be reduced by the use of estimators that solve the ME problem. It has been common in

the literature to employ instrumental variables estimators to resolve the problem (see, e.g.,

Almeida, Campello, and Galvao, 2010; Lewellen and Lewellen, 2014).

In order to better evaluate the performance of the alternative estimators in practice, we

describe some hypotheses about the effects of measurement error correction on the estimated

coefficients β and α from equation (21). Theory does not pin down the exact values that

these coefficients should take. Nevertheless, one could argue that the two following conditions

should be reasonable.

First, an estimator that solves ME in q∗ in a standard investment equation should return

a higher estimate for β and a lower estimate for α when compared with standard OLS

estimates. ME cause an attenuation bias on the estimate for the coefficient β. In addition,

since q and cash flow are likely to be positively correlated, ME should cause an upward bias

27



on the empirical estimate of α under the standard OLS estimation. Thus, denoting the OLS

and the measurement error corrected (MEC) estimates, respectively, by (βOLS, αOLS) and

(βMEC , αMEC), one should expect:

Condition 1: βOLS < βMEC and αOLS > αMEC .

Second, one would expect the coefficient for q to be positive and the cash flow coefficient

to be non-negative after controlling for measurement error. The q-theory of investment

predicts a positive correlation between investment and q (e.g. Hayashi, 1982). Under this

theory, the cash flow coefficient should be zero (“neoclassical view”), after controlling for

ME. However, in practice the cash flow coefficient could be positive because of either the

presence of financing frictions (e.g. Fazzari, Hubbard, and Petersen, 1988), or the fact that

cash flow captures variation in investment opportunities even after we apply a correction for

mismeasurement in q.6 Therefore, one should observe:

Condition 2: βMEC > 0 and αMEC ≥ 0.

Notice that these conditions are fairly intuitive. If a particular ME corrected estimator

does not deliver these basic results, one should have reasons to question the usefulness of

that estimator in applied work.

6.3 Instrumental variables models

One potential solution to the endogeneity problem is the IV method. Conventional IV

approaches to solve the measurement error in investment equation models employ lags of qit

as instruments for qit.

6However, financial constraints are not sufficient to generate a strictly positive cash flow coefficient because
the effect of financial constraints is capitalized in stock prices and may thus be captured by variations in q
(Chirinko, 1993; Gomes, 2001).

28



In order to make the instruments valid, such that the IV approach removes the bias,

assumptions on the dynamics of measurement errors need to be imposed. Almeida, Campello,

and Galvao (2010) discuss such condition in details. In the simplest case, if the measurement

error eit in equation (22) is i.i.d. across firms and time, and qit is serially correlated, then, for

example, qit−2, qit−3, or (qit−2−qit−3) are valid as instruments for qit, because, for instance, in

equation (23) qit−2 is correlated with qit but uncorrelated with εit. The resulting instrumental

variables estimator is consistent.

There are two simple ways to relax the standard assumption of i.i.d. measurement errors.

First, one can consider an assumption of time-invariant autocorrelation. Then twice-lagged

levels of the observable variables can be used as instruments. Second, under the first-order

moving average structure (i.e., MA(1)) for the measurement error, the consistency of the IV

estimator requires the use of instruments that are lagged two periods or longer. Additionally,

the identification requires the latent regressor to have some degree of autocorrelation (since

lagged values are used as instruments). See Biorn (2000) for more details.

However, the approach of using lagged qit as IV’s fails when the measurement errors on

the marginal q are systematic. In practice, it is highly likely that current-period measurement

error is correlated with the first-order or higher-order lags of the measurement error. This

phenomenon of autocorrelation in the measurement errors seems to be more realistic in

practice because systematic errors on a way of evaluating average q would be highly likely

to be persistent. Then, in general eit could depend on {eit−1, eit−2, eit−3, ...}. Under the

presence of autocorrelation in the measurement errors (e.g., AR(1)), the IV approach will

not work since the estimates are biased due to the dependence of the instrument (qit−1) and

the current-period measurement error (eit) through the first-order lag of measurement error

(eit−1).
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6.4 A preview of our solution

In this paper we solve the ME endogeneity problem by explicitly modeling the conditional

expectation of the interaction qitεit in (23) given a set of simultaneous variables zit. In

other words, we model E(qitεit|zit, cit, qit) as a function of observables, zit, and estimate the

parameters of interest consistently. In this section, we show that, contrary to IV, even under

the assumption that the marginal q and the ME are correlated, lagged Tobin’s q and its

square are valid simultaneous variables, zit. This result holds because we can show that

these simultaneous variables are simultaneously related to the endogenous variable q and

the error term ε. Therefore, we use the proposed methods with the following specification

for Assumption 1 (ii) and a set of observable variables zit such that

E(qitεit|zit, cit, qit) = Zitφ, (24)

where Zit = [qit−1, q
2
it−1].

Now we discuss the choice of these the simultaneous variables Z and show they are

related to the interaction term qε. The ME bias in the OLS estimator arises from the fact

that E[qitεit] 6= 0. Note that

qitεit = (q∗it + eit)(ηit − βeit) = (q∗it + eit)ηit − β(q∗iteit + e2
it). (25)

From the maximization of firm’s profit, we can derive the linear investment model (21) by

assuming linearly homogenous cost function. As a result, η is a pure idiosyncratic shock to

the investment and the model implies that there is no correlation between (q∗, e) and η.

Furthermore, η can be assumed to be i.i.d. and with zero mean in equation (21). Thus, our

main concern is the second term in equation (25), (q∗iteit + e2
it).

We need to show that the simultaneous variables, lagged Tobin’s q and its square, are

valid variables, that is, they are related to the interaction term qitεit. To establish the
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result, let both q∗ and e be autocorrelated such that lags of q can be used to eliminate the

endogeneity. Because both the endogenous variable q and the error term ε are functions of

q∗ and e, a polynomial function of the lags of q may be able to model (q∗iteit + e2
it). Thus,

the main idea is to model this explicitly.

Consider the example where both q∗ and e follow AR(1) processes:

q∗it = ρq0 + ρq1q
∗
it−1 + wqit

eit = ρe1eit−1 + weit,

where |ρq1| < 1, |ρe1| < 1 and wq and we are i.i.d and zero mean processes.7 Then,

q∗iteit + e2
it = (ρq0 + ρq1q

∗
it−1 + wqit)(ρ

e
1eit−1 + weit) + (ρe1eit−1 + weit)

2

= ρq0ρ
e
1eit−1 + ρq1ρ

e
1q
∗
it−1eit−1 + (ρe1)2e2

it−1 +$it,

where $it ≡ ρq0w
e
it + ρq1q

∗
it−1w

e
it + ρe1w

q
iteit−1 + wqitw

e
it + (weit)

2 + 2ρe1eit−1w
e
it and E[$it |

eit−1, qit−1] = 0.

Now consider a set of variables that contains a polynomial of the lags of qit. For instance,

consider a quadratic polynomial of qit−1. Thus, we have

qit−1 = q∗it−1 + eit−1,

q2
it−1 = (q∗it−1 + eit−1)2 = q∗2it−1 + 2q∗it−1eit−1 + e2

it−1.

From equation (25) and the above derivations, one can recognize that Zit = [qit−1, q
2
it−1]

contains valuable information on (q∗iteit + e2
it) and consequently qitεit. This supports the

idea that the information content provided by the simultaneous variables is sufficient enough

to explain the dependence between the endogenous qit and the error term εit, such that

equation (24) should be satisfied. In general, one could consider a higher order poly-

nomial of the lags of qit for firm i obtaining the set of simultaneous variables as Zit =

[1, qit−1, q
2
it−1, ..., q

m
it−1, qit−2, q

2
it−2, ..., q

m
it−2, ...., qit−j, ..., q

m
it−j], where m and j are integers.

7There is no constant term in the process for eit without loss of generality.
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6.5 Data

The data are taken from COMPUSTAT and cover 1970 to 2005, and the data collection

process follows that of Almeida and Campello (2007). The sample consists of manufacturing

firms with fixed capital of more than $ 5 million (with 1976 as the base year for the cpi), and

the sample firms have growth of less than 100% in both assets and sales. Summary statistics

for investment, q, and cash flow are presented in Table 3. These statistics are similar to

those reported by Almeida and Campello (2007), among other papers. To save space, we

omit the discussion of these descriptive statistics.

[TABLE 3 ABOUT HERE]

6.6 Estimates and tests

We estimate the above investment equation using OLS, instrumental variables (IV), and

simultaneous variables models. The results for OLS and IV are summarized in Table 4 and

for the simultaneous variables in Table 5. For the IV we use different combinations of lags of

Tobin’s q as instruments. In the same fashion, we use lags of the regressors as simultaneous

variables.

Regarding the OLS estimates, we obtain the standard result in the literature that both

q and CF attract positive coefficients which are statistically significant (see Table 4). In the

OLS specification, we obtain a q coefficient of 0.0626, and a cash flow coefficient of 0.1307,

which are likely to be biased. These results are consistent with those in the literature. In

particular, Erickson and Whited (2000) and Almeida, Campello, and Galvao (2010) report

very similar results for OLS estimates.

Now we consider the IV estimates. We first test the hypothesis of no first-order au-

tocorrelation in the residuals of the simple OLS regression using a simple Durbin-Watson

32



test (DW). We find that the coefficient for the AR(1) model (of the residuals) is 0.474 with

standard error of 0.007, and the DW statistic is 1.051, which rejects the null hypothesis

of no first-order autocorrelation. This result evidences that lags of q are likely invalid in-

struments for the IV case. In spite of the testing results, the point estimates are in Table

4. As expected, following the IV procedure, we obtain estimates for q and cash flow that

do not satisfy the conditions discussed above, although they are statistically significant. In

particular, IV estimators do not reduce the cash flow coefficient relative to that obtained by

the standard OLS, while the q coefficients even decrease. For example, in the third column

of Table 4 (IV2), which uses qt−1 and q2
t−1 as instruments, the q coefficient is 0.0496 and

CF coefficient is 0.1333. We also examine the robustness of the estimators to variations in

the set of instruments used in the estimation, including sets that feature longer lags of the

variables and the squares of them in the model. Columns (IV3)-(IV8) of Table 4 present

these results and show that the q and CF coefficients from IV estimators do not improve

substantially with the selection of instruments used. When the first-order of q is not included

as instrument, the q coefficients are even worse. Therefore, given the concern about mea-

surement error, these results show that the IV estimates are inconsistent with Conditions 1

and 2 above, and there is strong evidence that the instrumental variables approach is not

able to solve the measurement error problem in this investment equation example.

The results for the simultaneous variables case are presented in Table 5. All coefficients

for q and CF are statistically different from zero. By comparison, the simultaneous variables

approach delivers results that are consistent with Conditions 1 and 2. The q coefficient is

almost twice as large as the standard OLS estimate, depending on the set of variables used.

At the same time, the cash flow coefficient goes down by about 10% from the standard OLS

value. In particular, the results in column S2, using qt−1 and q2
t−1 as simultaneous variables,

show that the q coefficient increases from 0.0626 for OLS to 0.1107 for the simultaneous
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variables approach, while the cash flow coefficient drops from 0.1307 for OLS to 0.1208 for

the simultaneous variables approach. These results suggest that the proposed estimator does

a fairly reasonable job at addressing the measurement error problem. It is worth noting that

choosing proper simultaneous variables is important to obtain consistent estimates. When

qt−1 and q2
t−1 are chosen (column S2), the proposed estimator obtains the most reasonable

results. When other further lags are added (column S8), the results do not change substan-

tially. When qt−1 and q2
t−1 are omitted, however, the q coefficients reduce. This issue is

analogous to the instrumental variables approach of which consistency heavily relies on the

selection of valid instruments. As a result, it would be interesting and important to study the

optimal selection of simultaneous variables. We leave it as a future research. Nevertheless,

the estimates from our proposed approach are always consistent with Conditions 1 and 2,

under different sets of simultaneous variables.8

[TABLE 4 ABOUT HERE]

[TABLE 5 ABOUT HERE]

In all, our empirical tests support the idea that simultaneous variables estimators are

likely to outperform the IV estimators in economics and finance applications in which auto-

correlated measurement error is a relevant concern.

7 Conclusion

This paper proposes a new methodology for solving endogeneity bias in econometric models.

The main identification condition explicitly models endogeneity bias in a direct way as a

function of additional variables. These, however, play a different role from the instrumental

8For the robustness check of the performances of the proposed estimator, higher-order moments such as
the cubes of the lags of q have been included, but they do not change the results.
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variables, and hence the new proposal can be viewed as a complement to the IV. Under

the specified conditions, we establish identification of the parameters of interest, propose an

estimator and derive its consistency and asymptotic normality of the proposed estimator. We

also develop inference procedures based on the Wald statistics. Furthermore, we illustrate

the usefulness of the proposed methods by revisiting the investment equation model. The

scope of potential applications using the new techniques is large because it relies on mild

conditions for identification of parameters.

Many issues remain to be investigated in future research. There are many variants of the

model that would extend the structure for the simultaneous variables. A natural extension

would be to panel data. The analysis of the performance of the methods and more general

testing procedures is also important direction. Applications to program evaluation studies

would appear to be a natural laboratory for further development of simultaneous variables

methodology.

35



Appendix

A. Proof of the Theorems

Proof of Theorem 1

Note that from Assumption 1, E(x2ε − Zφ | z,x) = E(x2(y − x1β1 − x2β2) − Zφ |

z,x) = E(x2y − x2x1β1 − x2x2β2 − Zφ | z,x) = E(x2y − x2x1(E(x>1 x1)−1E(x>1 y) −

E(x>1 x1)−1E(x>1 x2)β2)− x2x2β2 −Zφ | z,x) = E(x2(y − x1E(x>1 x1)−1E(x>1 y))− x2(x2 −

x1E(x>1 x1)−1E(x>1 x2))β2 − Zφ | z,x) = E(ỹ − x̃α | z,x) = 0. We then have E(z̃>(ỹ −

x̃α)) = 0 or E(z̃>ỹ) = E(z̃>x̃)α. Also note that from E(x>1 ε) = 0, E(x>1 (y − x1β1 −

x2β2)) = 0, E(x>1 y)− E(x>1 x1)β1 − E(x>1 x2)β2 = 0. This system admits a unique solution

θ if and only if E(z̃>x̃) and E(x>1 x1) are non-singular (Assumption 2). Q.E.D.

Proof of Theorem 2

Let x̃ ≡ [x2(x2 − x1δ),Z] and x̂ ≡ [x2(x2 − x1δ̂),Z] where δ ≡ E(x>1 x1)−1E(x>1 x2) and

δ̂ ≡
(

1
n

∑n
i=1 x

>
1ix1i

)−1 ( 1
n

∑n
i=1 x

>
1ix2i

)
. Also let ỹ ≡ x2(y−x1γ) and ŷ ≡ x2(y−x1γ̂) where

γ ≡ E(x>1 x1)−1E(x>1 y) and γ̂ ≡
(

1
n

∑n
i=1 x

>
1ix1i

)−1 ( 1
n

∑n
i=1 x

>
1iyi
)
.

From ỹi = x̃iα+ ui, where ui is i.i.d. innovation, we have

ỹi + (ŷi − ŷi) = (x̃i + x̂i − x̂i)α+ ui,

ŷi = x̂iα + ui − (x̂i − x̃i)α+ (ŷi − ỹi). (26)

Also we have

α̂ =

(
1

n

n∑
i=1

z̃>i x̂i

)−1(
1

n

n∑
i=1

z̃>i ŷi

)

= α+

(
1

n

n∑
i=1

z̃>i x̂i

)−1(
1

n

n∑
i=1

z̃>i (ui − (x̂i − x̃i)α+ (ŷi − ỹi))

)
.
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Then

√
n(α̂−α) = Q̂−1n−1/2

n∑
i=1

z̃>i (ui − (x̂i − x̃i)α+ (ŷi − ỹi)), (27)

where Q̂ ≡ 1
n

∑n
i=1 z̃

>
i x̂i. By Chebychev’s LLN and Slutsky’s theorem,

Q̂ ≡ 1

n

n∑
i=1

z̃>i x̂i
p→ E(z̃>i x̃i) ≡ Q.

As considered in Pagan (1984), equation (26) contains generated regressors and generated

dependent variables. So we need to consider errors from these approximations in equation

(27).

First, since E(z̃>i ui) = 0, we have

n−1/2

n∑
i=1

z̃>i ui = op(1).

Second, by a mean value expansion,

n−1/2

n∑
i=1

z̃>i (x̂i − x̃i)α =

[
n−1

n∑
i=1

z̃>i ∇δx̃iα

]
√
n(δ̂ − δ) + op(1),

= G
√
n(δ̂ − δ) + op(1),

where G = E[z̃>i ∇δx̃iα].

Third, a similar argument gives us

n−1/2

n∑
i=1

z̃>i (ŷi − ỹi) =

[
n−1

n∑
i=1

z̃>i ∇γ ỹi

]
√
n(γ̂ − γ) + op(1),

= H
√
n(γ̂ − γ) + op(1),

where ∇γ ỹi = −x2x1 and H = E[z̃>i ∇γ ỹi].

Note that from the definition δ, we can write the following Bahadur representation

√
n(δ̂ − δ) =

√
n

n∑
i=1

ri(δ) + op(1),
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where ri(δ) =
(

1
n

∑n
i=1 x

>
1ix1i

)−1 (
x>1i(x2i − x1iδ)

)
, and E[ri(δ)] = 0 by the Law of Iterated

Expectations (LIE). In the same way, given the definition of γ, we can write the following

representation

√
n(γ̂ − γ) =

√
n

n∑
i=1

si(γ) + op(1),

where si(γ) =
(

1
n

∑n
i=1 x

>
1ix1i

)−1 (
x>1i(yi − x1iγ)

)
, and E[si(γ)] = 0 by LIE.

By combining all terms together, we have

√
n(α̂−α) = Q−1

{
n−1/2

n∑
i=1

[z̃>i ui −Gri(δ) +Hsi(γ)]

}
+ op(1).

For the consistency of α̂, we have

α̂
p→ α+Q−1 · 0 = α.

For the asymptotic normality, we have that by the Lindeberg-Lévy Central Limit Theorem,

√
n(α̂−α)

d→ Q−1N(0,M) ≡ N(0, Q−1MQ−1),

where M = V ar(z̃i
>ui −Gri(δ) +Hsi(γ)).

Similarly,

β̂1 =

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x1i(x1iβ1 + x2iβ2 + ε)

)
−

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x1ix2i

)
β̂2

= β1 +

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
β2 −

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
β̂2

= β1 −

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
(β̂2 − β2).

By Chebychev’s LLN,

Ĉ1 ≡
1

n

n∑
i=1

x>1ix1i
p→ E(x>1ix1i) ≡ C1,

Ĉ2 ≡
1

n

n∑
i=1

x>1ix2i
p→ E(x>1ix2i) ≡ C2,
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we have

β̂1
p→ β1 −C−1

1 C2Q
−1
β2
· 0 = β1,

where Qβ2 is the element in the Q matrix that corresponds to the estimation of β2.

Note that

√
n(β̂1 − β1) = −

(
1

n

n∑
i=1

x>1ix1i

)−1(
1

n

n∑
i=1

x>1ix2i

)
√
n(β̂2 − β2).

Thus, we have

√
n(β̂1 − β1)

d→ C−1
1 C2N(0, Vβ2) ≡ N(0,C−1

1 C2Vβ2C
>
2 C

−1
1 ).

Q.E.D.

B. Extension to Multiple Endogenous Variables

The proposed methodology can be easily extended to the case of multiple endogenous

variables. Suppose that there are multiple endogenous causes, x2. We then have the following

model for each individual

y = x1β1 + x2β2 + ε, (28)

where x2 ≡ [x21, x22, ..., x2p2 ] is a p2-dimensional vector of endogenous regressors and β2 ≡

[β21, β22, · · · , β2p2 ]
>

is a p2-dimensional vector of corresponding coefficients. Suppose that

the following equations hold. 
x21ε
x22ε

...
x2p2ε

 =


Z1φ1 + u1

Z2φ2 + u2
...

Zp2φp2 + up2

 , (29)

where (Z1,Z2, · · · ,Zp2) are simultaneous variables for each equation and where E(uj |

zj,x1, x2j) = 0 for j = 1, 2, ..., p2. Let each Zj be of dimension kj and φj of dimension

kj for j = 1, 2, ..., p2, and K = k1 + k2 + ... + kp2 . This give us a total of p1 + p2 + K

parameters to be estimated.
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These parameters will be estimated by the same number of moment conditions. First,

using exogeneity of x1, p1 moment conditions

E(x>1 ε) = 0.

Then plugging equation (28) into (29) gives
x21(y − x1β1 − x2β2)
x22(y − x1β1 − x2β2)

...
x2p2(y − x1β1 − x2β2)

 =


Z1φ1 + u1

Z2φ2 + u2
...

Zp2φp2 + up2

 .
Using E(x>1 ε) = 0, we have β1 = E(x>1 x1)−1E(x>1 y)−E(x>1 x1)−1E(x>1 x2)β2. Thus we

obtain
x21(y − x1(E(x>1 x1)−1E(x>1 y)− E(x>1 x1)−1E(x>1 x2)β2)− x2β2)
x22(y − x1(E(x>1 x1)−1E(x>1 y)− E(x>1 x1)−1E(x>1 x2)β2)− x2β2)

...
x2p2(y − x1(E(x>1 x1)−1E(x>1 y)− E(x>1 x1)−1E(x>1 x2)β2)− x2β2)

 =


Z1φ1 + u1

Z2φ2 + u2
...

Zp2φp2 + up2

 ,
or
x21(y − x1E(x>1 x1)−1E(x>1 y))
x22(y − x1E(x>1 x1)−1E(x>1 y))

...
x2p2(y − x1E(x>1 x1)−1E(x>1 y))

 =


x21(x2 − x1E(x>1 x1)−1E(x>1 x2))β2 +Z1φ1 + u1

x22(x2 − x1E(x>1 x1)−1E(x>1 x2))β2 +Z2φ2 + u2
...

x2p2(x2 − x1E(x>1 x1)−1E(x>1 x2))β2 +Zp2φp2 + up2

 .
By rearranging the equations we have

ỹ1

ỹ2
...
ỹp2

 =


x̃1α1 + u1

x̃2α2 + u2
...

x̃p2αp2 + up2

 ,
where ỹj ≡ x2j(y − x1E(x>1 x1)−1E(x>1 y)) and x̃j ≡ [x2j(x2 − x1E(x>1 x1)−1E(x>1 x2)),Zj],

and αj ≡ [β>2 ,φ
>
j ]> for j = 1, 2, ..., p2.

As a result, we have the following system of equations

Ỹ = X̃α+ u,
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where

Ỹ =


ỹ1

ỹ2
...
ỹp2

 , X̃ =


x̃1 0 · · · 0
0 x̃2 · · · 0
...

...
. . .

...
0 0 · · · x̃p2

 ,u =


u1

u2
...
up2


with α ≡ [α>1 ,α

>
1 , ...,α

>
p2

]>.

Finally, consider the following p2 +K moment conditions
E(x̃>1 u1) = 0
E(x̃>2 u2) = 0

...
E(x̃>p2up2) = 0

 ,
or equivalently

E(X̃>u) = 0.

As seen in the case for a single endogenous regressor, conditions similar to Assumptions

1 and 2 for each endogeneous cause are required to identify the parameters β1 and α.
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Table 1: DGP with no endogeneity. Monte Carlo re-
sults: Bias, Median Absolute Deviation, and Root Mean
Squared Error

Estimator
Model OLS IV SV OLS IV SV

n = 100 n = 200
Bias

zsv -0.001 3.641 0.002 0.001 -1.104 0.002
ziv -0.001 0.002 -0.003 0.001 0.000 0.000

MAD
zsv 0.056 1.056 0.070 0.041 1.091 0.050
ziv 0.055 0.166 0.085 0.040 0.115 0.060

RMSE
zsv 0.083 253.644 0.106 0.059 119.844 0.075
ziv 0.082 0.416 0.126 0.059 0.186 0.090

n = 500 n = 1000
Bias

zsv 0.000 9.609 0.000 0.000 -2.191 0.001
ziv 0.000 0.000 0.000 0.000 0.002 0.000

MAD
zsv 0.025 1.041 0.032 0.018 1.048 0.022
ziv 0.024 0.075 0.040 0.018 0.052 0.027

RMSE
zsv 0.037 797.869 0.048 0.026 101.951 0.034
ziv 0.036 0.115 0.058 0.026 0.080 0.042

Notes: Monte Carlo experiments are based on 5,000 repetitions. Estimates of β2. zsv and ziv are,

respectively, the used simultaneous variables and instrumental variables employed in the estimations.
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Table 2: DGP with endogeneity. Monte Carlo re-
sults: Bias, Median Absolute Deviation, and Root Mean
Squared Error

Estimator
Model OLS IV SV OLS IV SV

n = 100 n = 200
Bias

zsv1 0.667 0.851 -0.138 0.668 0.644 -0.097
zsv2 0.666 -21.8 -0.019 0.667 0.755 -0.017
ziv 0.668 -0.078 0.808 0.667 -0.037 0.805

MAD
zsv1 0.668 0.943 0.205 0.669 0.947 0.143
zsv2 0.664 1.202 0.045 0.666 1.199 0.027
ziv 0.665 0.236 0.806 0.668 0.170 0.804

RMSE
zsv1 0.674 18.1 0.307 0.671 63.462 0.225
zsv2 0.673 1557.8 0.085 0.670 25.6 0.057
ziv 0.675 2.737 0.825 0.670 0.281 0.814

n = 500 n = 1000
Bias

zsv1 0.666 -0.161 -0.056 0.667 0.570 -0.031
zsv2 0.668 0.510 -0.009 0.666 1.140 -0.005
ziv 0.667 -0.015 0.801 0.667 -0.003 0.802

MAD
zsv1 0.666 0.895 0.089 0.667 0.921 0.060
zsv2 0.668 1.179 0.014 0.667 1.185 0.009
ziv 0.668 0.168 0.841 0.667 0.073 0.802

RMSE
zsv1 0.668 58.2 0.141 0.667 20.719 0.094
zsv2 0.669 51.1 0.030 0.667 24.214 0.017
ziv 0.669 0.168 0.805 0.667 0.110 0.804

Notes: Monte Carlo experiments are based on 5000 repetitions. Estimates of β2. zsv1, zsv2, and ziv

are, respectively, the used simultaneous variables 1 and 2, and instrumental variables employed in the

estimations.
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Table 3: Investment example. Descriptive statistics

Variable Mean Std. Dev. Min Max Obs
Investment 0.2026 0.1348 0.0000 2.5349 24676

q 0.8755 0.4900 0.1307 22.7939 24676

Cash flow 0.3193 0.6212 -80.3571 14.8021 24676

Table 4: Investment example. OLS and Instrumental Variables approaches (using qt−1, q2
t−1

qt−2, q2
t−2, qt−3, and q2

t−3 as IV)

OLS IV1 IV2 IV3 IV4 IV5 IV6 IV7 IV8
q 0.0626*** 0.0478*** 0.0496*** 0.0325*** 0.0373*** 0.0241*** 0.0288*** 0.0470*** 0.0488***

( 0.003 ) ( 0.004 ) ( 0.004 ) ( 0.005 ) ( 0.005 ) ( 0.006 ) ( 0.006 ) ( 0.004 ) ( 0.004 )
CF 0.1307*** 0.1337*** 0.1333*** 0.1368*** 0.1358*** 0.1385*** 0.1375*** 0.1338*** 0.1335*

( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.003 )
Const. 0.1053*** 0.1165*** 0.1151*** 0.1282*** 0.1245*** 0.1345*** 0.1310*** 0.1171*** 0.1157

( 0.003 ) ( 0.003 ) ( 0.003 ) ( 0.004 ) ( 0.004 ) ( 0.005 ) ( 0.005 ) ( 0.003 ) ( 0.003 )
qt−1 0.8348*** 1.0091*** 0.8133*** 1.0149***

( 0.004 ) ( 0.012 ) ( 0.007 ) ( 0.016 )
q2t−1 -0.0699*** -0.0818***

( 0.004 ) ( 0.005 )
qt−2 0.5393*** 0.8266*** -0.0140* -0.0461***

( 0.004 ) ( 0.009 ) ( 0.008 ) ( 0.013 )
q2t−2 -0.0806*** 0.0070**

( 0.002 ) ( 0.003 )
qt−3 0.2829*** 0.4717*** 0.0304*** 0.0526***

( 0.003 ) ( 0.006 ) ( 0.004 ) ( 0.006 )
q2t−3 -0.0308*** -0.0023***

( 0.001 ) ( 0.001 )

Notes: Robust standard errors in parentheses. Coefficients and standard errors for the IV are from the first stage regression.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Investment example. Simultaneous variable approach (using qt−1, q2
t−1, qt−2, q2

t−2,
qt−3, and q2

t−3 as simultaneous variables)

S1 S2 S3 S4 S5 S6 S7 S8
q 0.0938*** 0.1107*** 0.0896*** 0.0898*** 0.0804*** 0.0802*** 0.0969*** 0.1129***

( 0.026 ) ( 0.028 ) ( 0.022 ) ( 0.022 ) ( 0.019 ) ( 0.019 ) ( 0.026 ) ( 0.028 )
CF 0.1243*** 0.1208*** 0.1252*** 0.1251*** 0.1270*** 0.1271*** 0.1237*** 0.1204***

( 0.005 ) ( 0.006 ) ( 0.004 ) ( 0.004 ) ( 0.004 ) ( 0.004 ) ( 0.005 ) ( 0.006 )
Const. 0.0816*** 0.0687*** 0.0848*** 0.0846*** 0.0918*** 0.0920*** 0.0792*** 0.0671***

( 0.020 ) ( 0.021 ) ( 0.016 ) ( 0.016 ) ( 0.014 ) ( 0.015 ) ( 0.020 ) ( 0.021 )
qt−1 -0.0684** 0.0766*** -0.0350 0.0915***

( 0.029 ) ( 0.022 ) ( 0.028 ) ( 0.030 )
q2t−1 -0.0664*** -0.0606***

( 0.017 ) ( 0.017 )
qt−2 -0.0546*** -0.0248 -0.0260* -0.0142

( 0.017 ) ( 0.019 ) ( 0.015 ) ( 0.026 )
q2t−2 -0.0085 -0.0042

( 0.005 ) ( 0.008 )
qt−3 -0.0282*** -0.0253** -0.0093 -0.0071

( 0.009 ) ( 0.011 ) ( 0.009 ) 0.014 )
q2t−3 -0.0005 0.0007

( 0.001 ) ( 0.003 )

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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