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Abstract

This paper develops a dynamic model of rational behavior under uncertainty, in which
the agent maximizes the stream of the future τ-quantile utilities, for τ ∈ (0, 1). That is, the
agent has a quantile utility preference instead of the standard expected utility. Quantile
preferences have useful advantages, such as robustness and ability to capture heterogene-
ity. Although quantiles do not have some of the useful properties of expectations, such as
linearity and the law of iterated expectations, we show that the quantile preferences are
dynamically consistent. We also show that the corresponding dynamic problem yields a
value function, via a fixed-point argument, and establish its concavity and differentiability.
The principle of optimality also holds for this dynamic model. Additionally, we derive the
corresponding Euler equation. Empirically, we show that one can employ existing gener-
alized method of moments for estimating and testing the economic model directly from
the stochastic Euler equation. Thus, the parameters of the model can be estimated us-
ing known econometric techniques and interpreted as structural objects. In addition, the
methods provide microeconomic foundations for quantile regression estimation. To illus-
trate the developments, we construct an asset-pricing model and estimate the risk-aversion
parameters across the quantiles. The results provide strong evidence of heterogeneity in
the coefficients of risk aversion and discount factor.
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All models are wrong. Some are useful.

George Box

1 Introduction

Recently, there has been a great effort to incorporate heterogeneity into dynamic economic

models and econometrics.1 We contribute to this effort by developing a new dynamic model

for an individual, who, when selecting among uncertain alternatives, chooses the one with the

highest τ-quantile of the utility distribution for τ ∈ (0, 1], instead of the standard expected

utility. This quantile preference model is tractable, simple to interpret, and substantially

broadens the scope of economic applications, because it is robust to fat tails and allows to

account for heterogeneity through the quantiles.

Quantile preferences were first studied by Manski (1988) and axiomatized by Chambers

(2009) and Rostek (2010). Manski (1988) develops the decision-theoretic attributes of quantile

maximization and examines risk preferences of quantile maximizers. In the context of prefer-

ences over distributions, Chambers (2009) shows that monotonicity, ordinal covariance, and

continuity characterize quantile preferences. Rostek (2010) axiomatizes the quantile preference

in Savage (1954)’s framework, using a ‘typical’ consequence (scenario). In addition, Rostek

(2010) discusses the advantages of the quantile preferences, such as robustness and heterogene-

ity. Thus, quantile preferences are a useful alternative to the expected utility, and a plausible

complement to the study of rational behavior under uncertainty.2

This paper initiates the use of quantile preferences in a dynamic economic setting by

providing a comprehensive analysis of a dynamic rational quantile model. As a first step in

the development, we introduce dynamic programming for intertemporal decisions whereby the

economic agent maximizes the present discounted value of the stream of future τ-quantile

utilities by choosing a decision variable in an feasible set. Our first main result establishes

dynamic consistency of the quantile preferences, in the sense commonly adopted in decision

theory. Second, we show that the optimization problem leads to a contraction, which therefore

has a unique fixed-point. This fixed point is the value function of the problem and satisfies the

Bellman equation. Third, we prove that the value function is concave and differentiable, thus

establishing the quantile analog of the envelope theorem. Fourth, we show that the principle

of optimality holds. Fifth, using these results, we derive the corresponding Euler equation for

the infinite horizon problem.

We note that the theoretical developments and derivations in this paper are of independent

interest. From a theoretical point of view, the main results for the dynamic quantile model

1See, among others, Krusell and Smith (2006), Heathcote, Storesletten, and Violante (2009), and Guvenen
(2011) for economic models and Matzkin (2007) and Browning and Carro (2007) for econometrics.

2Quantile preferences can be associated with Choquet expected utility (see, e.g., Chambers (2007); Bassett,
Koenker, and Kordas (2004)). The method of Value-at-Risk, which is widespread in finance, also is an instance
of quantiles (see, e.g., Engle and Manganelli (2004)).
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– dynamic consistency, value function, principle of optimality, and Euler equation – are par-

allel to those of the expected utility model. However, because quantiles do not share all of

the convenient properties of expectations, such as linearity and the law of iterated expecta-

tions, the generalizations of the results from expected utility to quantile preference are not

straightforward.

The derivation of the Euler equation is an important feature of this paper because it allows

to connect economic theory with empirical applications. We show that the Euler equation has

a conditional quantile representation and relates to quantile regression econometric methods.

The Euler equation, which must be satisfied in equilibrium, implies a set of population orthog-

onality conditions that depend, in a nonlinear way, on variables observed by an econometrician

and on unknown parameters characterizing the preferences. Thus, empirically, one can employ

existing general econometric methods such as (non-smooth) generalized method of moments

(GMM) for estimating and testing the parameters of the model. In this fashion, these param-

eters can be interpreted as structural objects, and practical inference is simple to implement.

In addition, varying the quantiles τ enables one to empirically estimate a set of parameters

of interest as a function of the quantiles. This approach allows learning about the potential

underlying parameter heterogeneity among the different τ-quantiles. We note that the theo-

retical methods do not impose restrictions across quantiles, and thus the parameter estimates

might (or might not) reveal the underlying heterogeneity. Therefore, our methods provide

microeconomic foundations for quantile regression, and could be interpreted as providing a

test for the empirical relevance of heterogeneity.

Finally, we illustrate the methods with an asset-pricing model, which is central to contem-

porary economics and finance, and has been extensively used.3 We use a variation of Lucas

(1978)’s model where the economic agent decides on how much to consume and save by maxi-

mizing a quantile utility function subject to a linear budget constraint. We solve the dynamic

problem and obtain the Euler equation. Following a large body of literature, we specify a con-

stant relative risk aversion utility function and estimate the implied risk aversion and discount

factor parameters. The empirical results document strong evidence of heterogeneity in both

the coefficient of risk aversion and discount factor across quantiles. An interesting result is

that the coefficient of risk aversion is relatively larger for the lower quantiles and smaller for

the upper quantiles. This outcome is as predicted by the notion of risk studied by Manski

(1988). These results help to shed light on the equity premium puzzle and make it possible

to reconcile the relative large spread observed between the risk-free and risky assets with the

large relative risk aversion of an agent maximizing lower quantiles.

More broadly, this paper contributes to the literature by robustifying economic and pol-

icy design, and capturing potential heterogeneity by varying the quantiles τ. The proposed

methods could be applied to any dynamic economic problem, substituting the standard max-

3See, among others, Hansen and Singleton (1982), Mehra and Prescott (1985), Cochrane (2005), Mehra
(2008), Mehra and Prescott (2008) and Ljungqvist and Sargent (2012), and references therein.
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imization of expectation by maximization of the quantile objective function. Since dynamic

economic models are now routinely used in many fields, such as macroeconomics, finance, in-

ternational economics, public economics, industrial organization and labor economics, among

others, the proposed methods expand the scope of economic analysis and empirical applica-

tions, providing an interesting alternative to the expected utility models.

The remaining of the paper is organized as follows. Section 2 presents definitions and basic

properties of quantiles. Section 3 describes the dynamic economic model and presents the main

theoretical results. Section 4 discusses the estimation and inference. Section 5 illustrates the

empirical usefulness of the the new approach by applying it to the asset pricing model. Finally,

Section 6 concludes. We relegate all proofs to the Appendix.

1.1 Review of the Literature

This paper has a broad scope and relates to a number of streams of literature in economic

theory and econometrics.

First, the paper relates to the extensive literature on dynamic nonlinear rational expec-

tations models. Many models of dynamic maximization that use expected utility have been

proposed and discussed. These models have been workhorses in several economic fields. We

refer the reader to more comprehensive works, such as Stokey, Lucas, and Prescott (1989) and

Ljungqvist and Sargent (2012). We extend this literature by replacing expected utility with

quantile utility. Another related segment of the literature studies recursive utilities. We refer

the reader to Epstein and Zin (1989), Marinacci and Montrucchio (2010), and Remark 3.11

below for further discussions.

Second, this paper is related to the rich literature on economic models with heterogeneity.

Heckman (2001), Blundell and Stoker (2005), Krusell and Smith (2006), and Guvenen (2011)

provide reviews of the main ideas on heterogeneity and aggregation. Dynamic models with

heterogeneity typically feature individual-specific uncertainty that stems from fluctuations in

labor earnings, health status, and portfolio returns, among others. Virtually all of these models

rely on the expected utility framework and capture heterogeneity in a variety of ways. Part

of the literature allows for heterogeneity of the economic variables and shocks, but restricts

the parameters of interest – parameters that characterize the preference, for example – to be

homogeneous (see, e.g., Krusell and Smith (1998), Dynan (2000), Heaton and Lucas (2008)).

Another body of the literature encompasses heterogeneity by allowing the parameters to vary

in a small set – as a binary set, for example – (see, e.g., Mazzocco (2008), and Guvenen (2009)).

Yet another stream of the literature incorporates more general heterogeneity in the parameters

of interest, but imposes ad-hoc parametric restrictions on them – see, e.g., Herranz, Krasa, and

Villamil (2015). In this paper, we contribute to this literature by using the quantile preference

instead of the expected utility, which allows to account for heterogeneity through the quantiles.

Third, the paper relates to an extensive literature on estimating Euler equations. Since
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the contributions of Hall (1978), Lucas (1978), Hansen and Singleton (1982), and Dunn and

Singleton (1986) it has become standard in economics to estimate Euler equations based on

conditional expectation models. There are large bodies of literature in micro and macroeco-

nomics on this subject. We refer the reader to Attanasio and Low (2004) and Hall (2005),

and the references therein, for a brief overview. The methods in this paper derive a Euler

equation that has a conditional quantile function representation and estimate it using existing

econometric methods.

Finally, this paper is related to the quantile regression (QR) literature, for which there is

a large body of work in econometrics.4 Koenker and Bassett (1978) developed QR methods

for estimation of conditional quantile functions. These models have provided a valuable tool

in economics and statistics to capture heterogeneous effects, and for robust inference when

the presence of outliers is an issue (see, e.g., Koenker (2005)). QR has been largely used in

program evaluation studies (Chernozhukov and Hansen (2005) and Firpo (2007)). Quantiles

are employed for identification of nonseparable models (Chesher (2003) and Imbens and Newey

(2009)), nonparametric identification and estimation of nonadditive random functions (Matzkin

(2003)), and testing models with multiple equilibria (Echenique and Komunjer (2009)). This

paper contributes to the effort of providing microeconomic foundations for QR by developing

a dynamic optimization decision model that generates a conditional quantile restriction (Euler

equation).

2 Preliminaries

This section introduces basic concepts considered in the paper. Subsection 2.1 defines quantiles

and establishes well-known basic results that are useful later. Subsection 2.2 introduces the

one-period quantile preferences that will substitute the standard expected utility preferences

in our analysis. Subsection 2.3 briefly defines the notion of risk associated with the quantile

preferences.

2.1 Quantiles

Let X be a random variable, with c.d.f. F(α) ≡ Pr[X 6 α]. The quantile function Q : [0, 1] →
R = R ∪ {−∞,+∞} is the generalized inverse of F, that is,

Q(τ) ≡

{
inf{α ∈ R : F(α) > τ}, if τ ∈ (0, 1]

sup{α ∈ R : F(α) = 0}, if τ = 0.
(1)

4This paper is also related to an econometrics literature on identification, estimation, and inference of gen-
eral (non-smooth) conditional moment restriction models. We refer the reader to, among others, Newey and
McFadden (1994), Chen, Linton, and van Keilegom (2003), Chen and Pouzo (2009), Chen, Chernozhukov, Lee,
and Newey (2014), and Chen and Liao (2015).
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The definition is special for τ = 0 so that the quantile assumes a value in the support of

Y.5 It is clear that if F is invertible (for instance, if F is continuous and strictly increasing),

its generalized inverse coincide with the inverse, that is, Q(τ) = F−1(τ). Usually, it will be

important to highlight the random variable to which the quantile refers. In this case we will

denote Q(τ) by Qτ[X]. For convenience, throughout the paper we will focus on τ ∈ (0, 1),

unless explicitly stated.

In Lemma 7.1 in the appendix, we develop some useful properties of quantiles, such as the

fact that it is left-continuous and F (Q(τ)) > τ. Another well-known and useful property of

quantiles is “invariance” with respect to monotonic transformations, that is, if g : R→ R is a

continuous and strictly increasing function, then

Qτ[g(X)] = g (Qτ[X]) . (2)

For τ ∈ (0, 1], the conditional quantile of W with respect to Z is defined as:

Qτ[w|z] ≡ inf{α ∈ R : Pr ([W 6 α] |Z = z) > τ}. (3)

Lemma 7.2, in the appendix, generalizes (2) to conditional quantiles. More precisely,

Lemma 7.2 proves that if g : Θ× Z→ R is non-decreasing and left-continuous in Z ∈ Z, then,

Qτ[g(θ, ·)|Z = z] = g (θ, Qτ[W|Z = z]) . (4)

This property is repeatedly used in the rest of the paper.

2.2 Quantile Preference

Expected utility is the widely used preference in economics and econometrics. To contextualize

the difference between the expected utility and the quantile preferences, let R denote the set of

random variables (lotteries). We say that the functional ϕ : R → R represents the preference

� if for all X, Y ∈ R we have:

X � Y ⇐⇒ ϕ(X) > ϕ(Y). (5)

In von-Neumann-Morgenstern’s expected utility, ϕ(X) = E[u(X)]. To be more specific, von-

Neumann-Morgenstern theorem states that � satisfies completeness, transitivity, continuity

and independence if and only if there exists an utility function u such that6

X � Y ⇐⇒ E[u(X)] > E[u(Y)]. (6)

This paper departs from this standard preference by adopting the quantile preferences,

5Indeed, inf{α ∈ R : F(α) > 0} = −∞, no matter what is the distribution.
6 See Kreps (1988) for more details.
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where the functional ϕ in (5) is given by a quantile function, that is, ϕ(X) = Qτ [u(X)], so

that:

X � Y ⇐⇒ Qτ [u(X)] > Qτ [u(Y)] . (7)

Manski (1988) was the first to study this preference, which was recently axiomatized by

Chambers (2009) and Rostek (2010). Rostek (2010) axiomatized the quantile preferences in

the context of Savage (1954)’s subjective framework. Rostek (2010) modifies Savage’s axioms

to show that they are equivalent to the existence of a τ ∈ (0, 1), probability measure and utility

function such that the functional ϕ in equation (5) is a quantile function.7 In contrast, the

utility function and the probability distributions are in some sense already fixed in Chambers

(2009)’s approach. He shows that the preference satisfies monotonicity, ordinal covariance, and

continuity if and only if (7) holds, that is, the preference is a quantile preference; see his paper

for more details.8

2.3 Risk in the Quantile Model

Another interesting property of the quantile preference is the relationship of the risk attitude

with respect to the τ, identified by Manski (1988). The following result by Manski (1988)

establishes the connection between the risk attitude and quantiles; see also Rostek (2010,

section 6.1) for discussion, definitions and details.

Theorem 2.1 (Manski, 1988). �τ ′ is more risk-averse than �τ if and only if τ ′ < τ.

Thus, a decision maker that maximizes a lower quantile is more risk-averse than one who

maximizes a higher quantile. In other words, the “risk-aversion” (in this definition) decreases

with the quantile. In Section 5 below, we empirically obtained this result in the context of

asset pricing.

3 Economic Model and Theoretical Results

This section describes a dynamic economic model and develops a dynamic program theory for

quantile preferences. We try to follow closely the developments of Stokey, Lucas, and Prescott

(1989, chapter 9). We begin in subsection 3.1 by extending the quantile preference to a dynamic

environment, suitable for our analysis. Subsection 3.2 states and discusses the assumptions

used for establishing the main results. Subsection 3.3 establishes the existence of recursive

functions, necessary to complete the definition of the preferences. Subsection 3.4 shows that

the preference is dynamically consistent. In subsection 3.5 we establish the existence of the

7If τ ∈ {0, 1}, the statement is more complex; see her paper for details.
8Since the upper semicontinuity property is a technical condition and first-order stochastic dominance is a

very weak and reasonable property, also satisfied by expected utility, the really important property is invariance
with respect to monotonic transformations. We have stated this property before in equation (2). Thus, this
property could be considered the essence of the quantile preference considered here.
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value function and its differentiability. Subsection 3.6 states and proves, in our context, the

Bellman’s Principle of Optimality, which allows to pass from plans to single period decisions

and vice-versa, thus establishing that the value function corresponds to the original dynamic

problem in a precise sense. Subsection 3.7 derives the Euler equation associated to this dynamic

problem, which describes the agents behavior and is useful for the econometric part of the

paper. Finally, subsection 3.8 illustrates the theory with an example of the one-sector growth

model.

The main results in this section are generalizations to the quantile preferences’ case of the

corresponding ones in Stokey, Lucas, and Prescott (1989), which focus on expected utility.

First, they increase the scope of potential applications of economic models substantially by

using quantile utility. Second, the generalizations are of independent interest. The demon-

strations are not routine since quantiles do not possess several of the convenient properties of

expectations, such as linearity and the law of iterated expectations.

3.1 Dynamic Environment and Dynamic Quantile Preference

Section 2.2 introduced and discussed the quantile preferences with respect to single period

uncertainty. We adopt this preference in a dynamic environment. In such an environment,

the random variable whose quantile the decision-maker/consumer is interested is given by a

stream of future consumption. To describe this more formally, we introduce now a dynamic

setting that will be used in the rest of the paper.

3.1.1 States and Shocks

Let X ⊂ Rp denote the state space, and Z ⊆ Rk the range of the shocks (random variables)

in the model. Let xt ∈ X and zt ∈ Z denote, respectively, the state and the shock in period t,

both of which are known by the decision maker at the beginning of period t. We may omit the

time indexes for simplicity, when it is convenient. Let Zt = Z × · · · × Z (t-times, for t ∈ N),

Z∞ = Z× Z× · · · and N0 ≡ N ∪ {0}. Given z ∈ Z∞, z = (z1, z2, ...), we denote (zt, zt+1, ...) by

tz and (zt, zt+1, ..., zt ′) by tzt ′ . A similar notation can be used for x ∈ X∞.

The random shocks will follow an time-invariant (stationary) Markov process. More pre-

cisely, a probability density function (p.d.f.) f : Z × Z → R+ establishes the dependence

between Zt and Zt+1, such that the process is invariant with respect to t. For simplicity of

notation, we will frequently represent Zt and Zt+1 by Z and W, respectively. We will assume

that f and Z satisfy standard assumptions, as explicitly stated below in section 3.2.

For any topological space W, we will denote by σ(W) the σ-algebra generated by its open

sets. For each z ∈ Z and A ∈ σ(Z), define

K(z,A) ≡
∫
A

f(w|z)dw, (8)
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where f(w|z) =
f(z,w)∫

Z f(z,w)dw
. Thus, K is a probabilistic kernel, that is, (i) z 7→ K(z,A) is

measurable for every A ∈ σ(Z); and (ii) A 7→ K(z,A) is probability measure for every z ∈ Z.

In other words, K represents a conditional probability, and we may emphasize this fact by

writing K(A|z) instead of K(z,A). We will also abuse notation by denoting K(z, {z ′ : z ′ 6 w})

simply by K(w|z).

3.1.2 Plans and Preferences

At the beginning of period t , the decision maker knows the current state xt and learns the shock

zt and decides (according to preferences defined below) the future state xt+1 ∈ Γ(xt, zt) ⊂ X,

where Γ(x, z) is the constraint set.9 From this, we can define plans as follows:

Definition 3.1. A plan π is a profile π = (πt)t∈N, where for each t ∈ N, πt is a measurable

function from X× Zt to X.10

The interpretation of the above definition is that a plan πt(xt, z
t) represents the choice

that the individual makes at time t, upon observing the current state xt and the sequence of

previous shocks zt. The following notation will simplify statements below.

Definition 3.2. Given a plan π = (πt)t∈N ∈ Π, x ∈ X and realization z∞ = (z1, ...) ∈ Z∞,

the sequence associated to (x, z∞) is the sequence (xπt )t∈N0 ∈ X∞ defined recursively by xπ1 = x

and xπt = πt−1(x
π
t−1, z

t−1), for t > 2. Similarly, given π ∈ Π, (x, zt) ∈ X× Zt, the t-sequence

associated to (x, zt) is (xπl )
t
l=1 ∈ Xt defined recursively as above.

We may write xπt (·), xπt
(
x, zt

)
or xπt (x, z

∞) to emphasize that xπt depends on the initial

state x and on the sequence of shocks z∞, up to time t.

Definition 3.3. A plan π is feasible from (x, z) ∈ X if πt(x
π
t , zt) ∈ Γ (xπt , zt) for every t ∈ N

and z∞ ∈ Z∞, such that xπ1 = x and z1 = z.

We denote by Π(x, z) the set of feasible plans from (x, z) ∈ X× Z. Let Π denote the set of

all feasible plans from some point, that is, Π ≡ ∪(x,z)∈X×ZΠ(x, z).
The agent’s preference in period t is represented by a function Vt : Π × X × Zt → R,

that will be specified below. Let Ωt represent all the information revealed up to time t.11

We assume that in time t with revealed information Ωt, the consumer/decision-maker has a

preference �t,Ωt over plans π,π ′ ∈ Π(x, z) defined as follows:

π ′ �t,x,Ωt π ⇐⇒ Vt(π
′, x, zt) > Vt(π, x, zt). (9)

9This model is very close to the one discussed in Stokey, Lucas, and Prescott (1989, Chapter 9). There are
different, slightly more complicated dynamic models where the state is not chosen by the decision maker, but
defined by the shock. The arguments in the current model can be extended to those models when preferences
are expected utility, as Stokey, Lucas, and Prescott (1989, Chapter 9) discuss. In our setup, this extension may
be more involved.

10In the expressions below, π0(z
0) should be understood as just π0 ∈ X.

11With the knowledge of a fixed π, Ωt reduces to the initial state x1 and the sequence of shocks zt. More
generally, we could take the sequence of states and shocks (xt, zt).
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A special case of our specification so far is, of course, the standard expected utility:

Vt(π, x, zt) = E

∑
s>t

βs−tu(xπs (x,Z
s), xπs+1(x,Z

s),Zs)

∣∣∣∣Zt = zt
 , (10)

where u : X × X × Z → R is the current-period utility function. That is, u (x,y, z) denotes

the instantaneous utility obtained in the current period when x ∈ X denotes the current

state, y ∈ X, the choice in the current state, and z ∈ Z, the current shock. Note that the

Markov assumption allows to substitute the expected conditional on Zt above by an expectation

conditional only on Zt.

It is important to realize that the functions Vt defined by (10) satisfy the following recursive

equation:

Vt(π, x, zt) = u(xπt , xπt+1, zt) + βE
[
Vt+1(π, x, (Zt,Zt+1))

∣∣Zt = zt] . (11)

Koopmans (1960), Lucas and Stokey (1984), Epstein and Zin (1989) and more recently

Marinacci and Montrucchio (2010) worked with a generalization of this recursive equation.12

More specifically, Marinacci and Montrucchio (2010) define an aggregator function W and a

certainty equivalent function C that allows us to generalize (11) to:

Vt(·) =W (u(·), C [Vt+1(·)]) . (12)

Our preferences are based on (12), where we use the same W as in the standard case, that

is, W(a,b) = a + βb, and just substitute the certainty equivalent function C, which is the

expectation E[·] in (11), by the quantile function Qτ[·]. That is, we impose:

Vt(π, x, zt) = u(xπt , xπt+1, zt) + βQτ
[
Vt+1(π, x, (Zt, zt+1))

∣∣Zt = zt] . (13)

In section 3.3 below, we explicitly define a sequence of functions Vt that satisfy (13) and will

specify the preferences (9).

3.2 Assumptions

Now we state the assumptions used for establishing the main results. We organize the as-

sumptions in two groups. The first group collects basic assumptions, which will be assumed

throughout the paper, even if they are not explicitly stated. The second group of assumptions

will be used only to obtain special, desirable properties of the value function.

12Koopmans (1960) and Lucas and Stokey (1984) are restricted to the case without uncertainty. Epstein
and Zin (1989) and Marinacci and Montrucchio (2010) deals with the case of uncertainty and issues related
to Kreps and Porteus (1978), which are not central to our investigation. Remark 3.11 discusses these further
developments and the relationship to this paper.
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Assumption 1 (Basic). The following is maintained throughout the paper:

(i) Z ⊆ Rk is convex;

(ii) f : Z× Z→ R+ is continuous, symmetric and f(z,w) > 0, for all (z,w) ∈ Z× Z;13

(iii) X ⊂ Rp is convex;

(iv) u : X× X× Z→ R is continuous and bounded;

(v) The correspondence Γ : X×Z⇒ X is continuous, with nonempty, compact, convex values.

Note that Assumption 1(i) allows an unbounded multidimensional Markov process, requir-

ing only that the support is convex. Assumption 1(ii) imposes continuity of f, the pdf that

establishes the dependence between Zt and Zt+1 and requires it to be strictly positive in the

support of the Markov process, Z. The state space X is not required to be compact, but only

convex by Assumption 1(iii). Assumption 1(iv) is the standard continuity assumption. As-

sumption 1(v) and the continuity of u required in Assumption 1(iv) guarantee that an optimal

choice always exist.

For some results we will also require differentiability, concavity and monotonicity assump-

tions.

Assumption 2 (Differentiability, Concavity and Monotonicity). The following holds:

(i) Z ⊆ R is an interval;

(ii) If h : Z→ R is weakly increasing and z 6 z ′, then:∫
Z

h(α)f(α|z)dα 6
∫
Z

h(α)f(α|z ′)dα; (14)

(iii) u : X×X×Z→ R is C1, strictly concave in the first two variables and strictly increasing

in the last variable;14

(iv) For every x ∈ X and z 6 z ′, Γ(x, z) ⊆ Γ(x, z ′);

(v) For all z ∈ Z and all x, x ′ ∈ X, y ∈ Γ(x, z) and y ′ ∈ Γ(x ′, z) imply

θy+ (1 − θ)y ′ ∈ Γ [θx+ (1 − θ)x ′, z], for all θ ∈ [0, 1].

13Symmetry guarantees stationarity, since Pr ([Z1 ∈ A]) =
∫
Z

∫
A
f(z1, z2)dz1dz2 =

∫
A

∫
Z
f(z1, z2)dz1dz2 =

Pr ([Z2 ∈ A]).
14Strict concavity in the first two variables means that for all z ∈ Z,α ∈ (0, 1) and (x0,y0) 6= (x1,y1), we have

u (xα,yα, z) > αu (x0,y0, z) + (1 − α)u (x1,y1, z), where xα = αx0 + (1 − α)x1 and yα is similarly defined.
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To work with monotonicity, we restrict the dimension of the Markov process to k = 1 in

Assumption 2(i). Assumptions 2(ii) − 2(v) are standard conditions on dynamic models (see,

e.g., Assumptions 9.8 − 9.15 in Stokey, Lucas, and Prescott (1989)). Assumption 2(ii) implies

that whenever z 6 z ′,

K(w|z ′) =

∫
{α∈Z:α6w}

f(α|z ′)dα 6
∫
{α∈Z:α6w}

f(α|z)dα = K(w|z), (15)

for all w.15 In other words, K(·|z ′) first-order stochastically dominates K(·|z). Assumption

2(iii) allows us to establish the continuity and differentiability of the value function. Assump-

tion 2(iv) only requires the monotonicity of the choice set. Assumption 2(v) implies that Γ(s)

is a convex set for each s ∈ S, and that there are no increasing returns.

It should be noted that monotonicity also is important for econometric reasons. Indeed,

Matzkin (2003, Lemma 1, p. 1345) shows that two econometric models are observationally

equivalent if and only if there are strictly increasing functions mapping one to another. Thus,

in a sense, the quantile implied by a model is the essence of what can be identified by an

econometrician.

3.3 The Sequence of Recursive Functions

In this section, we define the sequence of functions Vt that satisfy (13) and specify the pref-

erences (9). For this, we need to define a transformation. Let C denote the set of bounded

continuous functions from X × Z to R, endowed with the sup norm. It is well known that C

is a Banach space. Let us fix π ∈ Π and τ ∈ (0, 1], and define the transformation Tπ : C → C

(the dependency on τ is omitted) by the following:

Tπ(V)(x, z) = u (xπ1 , xπ2 , z1) + βQτ[V(x
π
2 ,Z2))|Z1 = z], (16)

where (xπ1 , z1) = (x, z) and xπ2 = π(x, z). We show that the image of Tπ is indeed in C

continuous and that Tπ is a contraction and, therefore, has a unique fixed point:

Theorem 3.4. Tπ(V) is continuous on X × Z. Tπ is a contraction and has a unique fixed

point, denoted Vπ : X× Z→ R.

Now we can define Vt as follows:

Vt(π, x, zt) = Vπ(xπt , zt),

where (xπl )
t
l=1 is the associated t-sequence to (x, zt) (see definition 3.2). From the fact that

Vπ is the unique fixed point of Tπ, it is clear that (13) holds. This completes the definition of

the preferences (9).

15To obtain (15), it is enough to use h(z) = −1{α∈Z:α6w}(z) in (42).
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It is possible to write Vπ in a more explicit form. For this, let us define

Vn(x, z) = u(xπ1 , xπ2 , z1) + Qτ

[
βu(xπ2 , xπ3 , z2) + Qτ

[
β2u(xπ3 , xπ4 , z3) + . . .

. . . + Qτ

[
βnu(xπn+1, x

π
n+2, zn)

∣∣∣Zn = zn

]
. . .

∣∣∣∣Z1 = z

]

=

n∑
t=0

Qtτ

[
βtu(xπt+1, x

π
t+2, zt)

∣∣∣Zt = zt], (17)

where the expression in the last line is just a short notation (actually, an abuse of notation)

for the previous lines. With this definition, we obtain:

Proposition 3.5. Vπ(x, z) = limn→∞ Vn(x, z).
Thus, we can use the following (abuse of) notation:

Vπ(x, z) =

∞∑
t=0

Qtτ

[
βtu(xπt+1, x

π
t+2, zt)

∣∣∣Zt = zt] (18)

= u(xπ1 , xπ2 , z1) + Qτ

[
βu(xπ2 , xπ3 , z2) + Qτ

[
β2u(xπ3 , xπ4 , z3) + . . .

. . . + Qτ

[
βnu(xπn+1, x

π
n+2, zn) + · · ·

∣∣∣ · · · ] · · · ∣∣∣Z2 = z2

∣∣∣∣Z1 = z

]
.

It is interesting to contrast (17) or (18) with the case of expected utility. In this case,

substituting Qτ[·] by E[·] in (18), we obtain:

V∞(x, z) = u(xπ1 , xπ2 , z1) + E

[
βu(xπ2 , xπ3 , z2) + E

[
β2u(xπ3 , xπ4 , z3) + . . .

. . . + E

[
βnu(xπn+1, x

π
n+2, zn) + · · ·

∣∣∣ · · · ] · · · ∣∣∣Z2 = z2

∣∣∣∣Z1 = z

]
.

Using the law of iterated expectations, we can simplify this to:

V∞(x, z) = E

[ ∞∑
t=0

βtu(xπt+1, x
π
t+2, zt)

∣∣∣Z1 = z1

]
,

which is the standard expression encountered in the economics literature. Nevertheless, one

is not able to simplify (18) in this way because an analogous law of iterated expectation does

not hold for quantiles, as Proposition 3.7 below shows.

We turn now to verify that this preference is dynamically consistent.
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3.4 Dynamic Consistency

Our objective is to develop a dynamic theory for quantile preferences. Thus, the dynamic

consistency of such preferences is of uttermost importance. In this section we formally define

dynamic consistency and show that it is satisfied by the above defined preferences. The fol-

lowing definition comes from Maccheroni, Marinacci, and Rustichini (2006); see also Epstein

and Schneider (2003).

Definition 3.6 (Dynamic Consistency). The system of preferences �t,Ωt is dynamically con-

sistent if for every t and Ωt and for all plans π and π ′, πt ′(·) = π ′t ′(·) for all t ′ 6 t and

π ′ �t+1,Ω ′t+1,x
π for all Ω ′t+1, x, implies π ′ �t,Ωt,x π.

In principle, there is no reason to expect that quantile preferences would be dynamically

consistent. For instance, the law of iterated expectations, which is important to the dynamic

consistency of expected utility, does not have an analogous for quantile preferences, as the

following result shows.

Proposition 3.7. Let Σ1 ⊃ Σ0 be two σ-algebras on Ω, τ ∈ (0, 1), and consider random

variables X : Ω→ R and Y : Ω→ R. Then, in general,

Qτ[Qτ[X|Σ1]|Σ0] 6= Qτ[X|Σ0]. (19)

and it is possible that

Qτ[X|Σ1](ω) > Qτ[Y|Σ1](ω), ∀ω ∈ Ω, but Qτ[X|Σ0](ω) < Qτ[Y|Σ0](ω), ∀ω ∈ Ω. (20)

Note that (20) suggests a potential negation of dynamic consistency for quantile preferences

in general. Fortunately, in our framework, quantile preferences are dynamically consistent and

amenable to the use of the standard techniques of dynamic programming, as the following

result establishes.

Theorem 3.8. The quantile preferences defined by (9) are dynamically consistent.

This result is important, because it implies that no money-pump can be used against a

decision maker with quantile preferences. Many preferences that departure from the expected

utility framework do not satisfy dynamic consistency. Indeed, Epstein and Le Breton (1993)

essentially prove that dynamic consistent preferences are “probabilistic sophisticated” in the

sense of Machina and Schmeidler (1992). Probabilistic sophistication roughly means that the

preference is “based” in a probability. The result in Theorem 3.8 implicitly establishes that

quantile preferences are probabilistic sophisticated. Once one understands the definitions,

this does not come as a surprise, since the a quantile is just a statistics, obviously based in

probability.
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3.5 The Value Function

In this section we establish the existence of the value function associated to the dynamic

programming problem for the quantile utility and some of its properties. This is accomplished

through a contraction fixed point theorem.

The first step is to the define the contraction operator; this is similar to what we have

defined in Section 3.3. For τ ∈ (0, 1], define the transformation Mτ : C→ C as

Mτ(v)(x, z) = sup
y∈Γ(x,z)

u (x,y, z) + βQτ[v(y,w)|z]. (21)

Note that this is similar to the usual dynamic program problem, in which the expectation

operator E[·] is in place of Qτ[·]. The main objective is to show that the above transformation

has a fixed point, which is the value function of the dynamic programming problem. The

following result establishes the existence of the contraction Mτ under the basic assumptions

assumed throughout this paper.

Theorem 3.9. Mτ is a contraction and has a unique fixed point vτ ∈ C.

The unique fixed point of the problem will be the value function of the problem. Notice

that the proof of this theorem is not just a routine application of the similar theorems from

the expected utility case. In particular, the continuity of the function (x, z) 7→ Qτ[v(x,w)|z] is

not immediate as in the standard case. Since v is not assumed to be strictly increasing in the

second argument, it can be constant at some level. Constant values may potentially lead to

discontinuities in the c.d.f or quantile functions; see illustration in section 7.1 in the appendix.

Thus, some careful arguments are needed for establishing this continuity.

The next step is to establish the differentiability and monotonicity of the value function.

Theorem 3.10. If Assumption 2 holds, then vτ : X × Z → R is strictly increasing in z and

differentiable and strictly concave in an interior point x. Moreover, ∂v
τ

∂xi
(x, z) = ∂u

∂xi
(x,y∗, z),

where y∗ ∈ Γ(x, z) is the unique maximizer of (21), assumed to be interior to Γ(x, z).

Theorem 3.10 is the most important result in the paper, since it delivers interesting and

important properties of the value function. Essentially, it establishes that the value function

that one obtains from quantile functions possesses essentially the same basic properties of the

value function of the corresponding expected utility problem. The second part of Theorem

3.10 is very important for the characterization of the problem. It is the extension of the

standard envelope theorem for the quantile utility case. Notice that since the quantile function

does not have some of the convenient properties of the expectation, we assumed that z were

unidimensional (see Assumption 2) in order to establish the conclusions of Theorem 3.10.

However, this unidimensionality requirement does not seem overly restrictive in most practical

applications. For example, it allows us to tackle the standard asset pricing model, as section

5 shows.
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Remark 3.11. The result in Theorem 3.9 is related to that in Marinacci and Montrucchio

(2010). They establish the existence and uniqueness of the value function in a more general

setup. Nevertheless, we are able to provide sharper characterizations of the fixed point vτ. In

particular, Theorem 3.9 establishes that vτ is continuous. Moreover, Theorem 3.10 shows that

vτ is differentiable, concave, and increasing.

3.6 The Principle of Optimality

Once we have established the existence of the value function, we can show that it corresponds to

the solution of the original dynamic programming problem. For this, we begin by establishing

that the set of feasible plans departing from (x, z) ∈ X × Z at time t is nonempty. More

formally, let us define:

Πt(x, z) ≡ {π ∈ Π(x, z) : ∃(x, zt) ∈ X× Zt, with zt = z, such that xπt (x, z
t) = x}.

Thus, Π1(x, z) is just Π(x, z). We have the following result regarding the set of feasible plans:

Lemma 3.12. For any x ∈ X and t ∈ N, Πt(x, z) 6= ∅.

This result allows us to define a supremum function as:

v∗t(x, z) ≡ sup
π∈Πt(x,z)

Vt(π, x, z). (22)

We first observe that t plays no role in the above equation (22), that is, we prove the

following:

Lemma 3.13. For any t ∈ N and (x, z) ∈ X× Z, v∗t(x, z) = v
∗
1(x, z).

Thus, we are able to drop the subscript t from (22) and write v∗(x, z) instead of v∗t(x, z).

The next step is to relate v∗ to vτ, the solution of the functional equation studied in the

previous section, which was proved to exist in Theorem 3.9 and satisfies the Bellman equation:

vτ(x, z) = sup
y∈Γ(x,z)

{u (x,y, z) + βQτ[v
τ(y,w)|z]} . (23)

In the rest of this section we will denote vτ simply by v.

To achieve this aim, we first establish important results relating v in equation (23) to the

policy function that solves the original problem. In particular, the next result allows us to

define the policy function:

Lemma 3.14. If v is a bounded continuous function satisfying (23), then for each (x, z) ∈
X× Z, the correspondence Υ : X× Z⇒ X defined by

Υ(x, z) ≡ {y ∈ Γ(x, z) : v(x, z) = u (x,y, z) + βQτ[v(y,w)|z]} (24)
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is nonempty, upper semi-continuous and therefore has a measurable selection.

Let ψ : X × Z → X be a measurable selection of Υ. The policy function ψ generates the

plan πψ defined by πψt (z
t) = ψ(πt−1(z

t−1), zt) for all zt ∈ Zt, t ∈ N.

The next result provides sufficient conditions for a solution v to the functional equation to

the be supremum function, and for the plans generated by the associated policy function ψ to

attain the supremum.

Theorem 3.15. Let v : X×Z→ R be bounded and satisfy the functional equation (23) and ψ

be defined as above. Then, v = v∗ and the plan πψ attains the supremum in (22).

We highlight that this generalization is not straightforward. When working with expected

utility, one can employ the law of iterated expectations. However, unfortunately a similar rule

does not hold for quantiles, as we have already observed in Proposition 3.7.

3.7 Euler Equation

The final step is to characterize the solutions of the problem through the Euler equation. Let

v = vτ be the unique fixed point of Mτ, satisfying (23). By Theorem 3.10, v is differentiable

in its first coordinate, satisfying vxi(x, z) =
∂vτ

∂xi
(x, z) = ∂u

∂xi
(x,y∗, z) = uxi(x,y

∗, z).

Given that we have shown the differentiability of value function, we are able to apply the

standard technique to obtain the Euler equation, as formalized in the following theorem:

Theorem 3.16. Let Assumption 2 hold. Assume that π is an optimal plan, xπt+1 ∈ intΓ(xπt , zt)

and ∂u
∂xi

(
xπt , xπt+1, zt

)
is strictly increasing in zt. Then, the following Euler equation holds for

every t ∈ N and i = 1, ...,p:

uyi
(
xπt , xπt+1, zt

)
+ βQτ[uxi

(
xπt+1, x

π
t+2, zt+1

)
|zt] = 0. (25)

In the expression above, uy represents the derivative of u with respect to (some of the

coordinates of) its second variable (y) and ux represents the derivative of u with respect to

(some of the coordinates of) its first variable (x).

Theorem 3.16 provides the Euler equation, that is the optimality conditions for the quantile

dynamic programming problem. This result is the generalization the traditional expected

utility to the quantile utility. The Euler equation in (25) is displayed as an implicit function,

nevertheless for any particular application, and given utility function, one is able to solve an

explicitly equation as a conditional quantile function.

The proof of Theorem relies on a result about the differentiability inside the quantile

function. Indeed, for a general function h, we have ∂
∂xi

Qτ[h(x,Z)] 6= Qτ

[
∂h
∂xi

(x,Z)
]
. However,

we are able to establish this differentiability under our assumptions. We are not aware of this

result in the theory of quantiles, and given its usefulness, we state it here:
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Proposition 3.17. Assume that Qτ and h : X×Z→ R are differentiable and that h and d are

increasing in z, where d(z) ≡ h(x ′i, x−i, z) − h(xi, x−i, z) for xi, x
′
i satisfying 0 < x ′i − xi < ε,

for some small ε > 0. Then, ∂Qτ∂xi
[h(x,Z)] = Qτ

[
∂h
∂xi

(x,Z)
]
.

3.8 Example: One-Sector Growth Model

We provide a simple example to illustrate the quantile maximization utility model: the one

sector-growth model (see, e.g., Brock and Mirman (1972)). We also compare the results with

the corresponding model for the expected utility maximization.

Consider the one sector-growth model with the quantile maximization utility. Using the

notation introduced in (18), we can write the consumer problem can be written as

max
(ct)∞t=0

∞∑
t=0

Qtτ

[
βtU (ct)

∣∣∣zt] , (26)

subject to the following constraints:

ct + kt+1 = zth(kt) (27)

0 6 kt+1 6 zth(kt),

where ct denotes the amount of consumption good, kt is stock of capital, zt is the shock, U(·)
is the utility function, and h(·) is the technology.

From the results in Section 3.5, the corresponding value function for problem (26)-(27) can

be expressed as

v(k, z) = max
y∈[0,zth(kt)]

{
U(zh(k) − y) + βQτ

[
v(y, z ′)|z

]}
.

It is easy to verify that this model satisfies Assumptions 1 and 2, and hence Theorems 3.9,

3.10, and 3.15. From Theorem 3.16, the Euler equation has the following representation:

−U ′(zth(kt) − kt+1) + βQτ
[
U ′(zt+1h(kt+1) − kt+2)zt+1h

′(kt+1)|zt
]
= 0.

By noting that ct = zth(kt)−kt+1 and rearranging one can express the above equation as

Qτ

[
β(τ)

U ′(ct+1)

U ′(ct)
zt+1h

′(kt+1) − 1
∣∣∣zt] = 0. (28)

Now we move our attention to the standard expected utility model, which can be written

as

max
(ct)∞t=0

E

[ ∞∑
t=0

βtU (ct)

]
, (29)
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subject to the same constraints in equation (27).

This problem can be rewritten and the associated value function is:

v(k, z) = max
y∈[0,zth(kt)]

{
U(zh(k) − y) + βE

[
v(y, z ′)|z

]}
.

Finally, the Euler equation can be written as

−U ′(zth(kt) − kt+1) + βE
[
U ′(zt+1h(kt+1) − kt+2)zt+1h

′(kt+1)|zt
]
= 0,

and by rearranging the previous equation we obtain

E

[
β
U ′(ct+1)

U ′(ct)
zt+1h

′(kt+1) − 1
∣∣∣zt] = 0. (30)

When comparing the Euler equations in (28) and (30) one can notice similarities and differ-

ences. The expressions inside the conditional quantile in (28) and the conditional expectation

in (30) are practically the same, except that, for the quantile model, the parameters depend on

the quantile τ. That is, for each τ, we will have (potentially) different β(τ) and parameters of

the utility function U(·) and technology h(·). Therefore, if there is relevant heterogeneity across

quantiles τ, this will appear in the parameters associated to each quantile. In other words,

when the parameter β(τ) is different from β(τ ′), one must conclude that there is relevant

heterogeneity across quantiles. On the other hand, if there is no differences in the parameters

across quantiles, then one can interpret this as evidence that the heterogeneity, if it exists at

all, is not relevant.

This discussion suggests a central contribution of this paper: we provide a test for empirical

relevance of heterogeneity. As we are going to discuss next, if one estimates the parameters and

finds no variation across quantiles, one could justify the use of the expected utility framework.

On the other hand, if the parameters vary across quantiles, there is evidence that the expected

utility framework is not capturing relevant heterogeneity. We further discuss heterogeneity in

quantile regression models in Section 4 below.

4 Estimation and Inference

In the previous section, we derived the Euler equation for the quantile utility model. For a

given parametrized utility function, one is able to isolate the implicit quantile function defined

by equation (25), thus obtaining the following conditional quantile model:

Qτ[m(yt, xt, θ0(τ))|Ωt] = 0, (31)
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where τ ∈ (0, 1) is a quantile of interest, (yt, xt) are the observable variables, Ωt denotes

the σ-field generated by {zs, s 6 t} that contains the information up to time t, and m(·) is a

function known up to a finite dimensional vector of parameter of interest θ0(τ).

In this section we discuss procedures for estimation and inference of the conditional quantile

functions using the generalized methods of moments (GMM).16 More specifically, we estimate

the parameters θ0(τ) that describe the Euler equation for each given τ ∈ (0, 1) of interest.

It has been standard to estimate Euler equations derived from the expected utility models.

It is an important exercise to learn about the structural parameters that characterize the

economic problem of interest. After parametrizing the utility function, the restrictions imply a

conditional average model and the parameters are commonly estimated by the GMM of Hansen

(1982). We apply general (non-smooth) GMM methods to estimate general models represented

by conditional moments. The methods are constructed in a manner that guarantees that the

estimator is consistent and asymptotically normal, and has asymptotic covariance matrices

that can be estimated consistently; hence, practical inference is simple to implement.

The model in (31) can be represented with a non-smooth conditional moment restrictions

as

E[τ− 1{m(yt, xt, θ0(τ)) < 0}|Ωt] = 0. (32)

Since E[1{m(yt, xt, θ0(τ)) < 0}|Ωt] = F[m(yt, xt, θ0(τ)|Ωt], when F(·) is invertible, one is able

to recover (31) from (32).

A general GMM estimator is defined as following. Suppose that there is a moment function

vector g(yt, xt, zt, θ0) such that the population moments satisfy E[g(yt, xt, zt, θ0)] = 0. A

GMM estimator is the one that minimizes a square of the Euclidean distance of the sample

moments from their population counterpart to zero. Let Ŵ be a positive semi-definite matrix,

so that (M ′ŴM) is a measure of distance of M from zero, and 1
T

∑T
t=1 g(yt, xt, zt, θ) is

the sample analogue of its population counterpart. A GMM estimator is one that solves the

following

θ̂ = arg min
θ

[
1

T

T∑
t=1

g(yt, xt, zt, θ)

] ′
Ŵ

[
1

T

T∑
t=1

g(yt, xt, zt, θ)

]
. (33)

Therefore, empirical strategies for estimating the conditional quantile function in (32) lead

immediately to a GMM procedure as in (33) where

g(yt, xt, zt, θ0) = zt(τ− 1{m(yt, xt, θ0(τ)) < 0}),

and zt is the set of instrumental variables, such that the conditional moment in (32) is satisfied.

Given a random sample {(yt, xt, zt) : t = 1, ...T }, for any given quantile τ, the parameters of

interest, θ0(τ), can be estimated by (33). The objective function depends only on the available

16In a seminal paper Koenker and Bassett (1978) introduced quantile regression methods, which have been
employed largely in economic applications.
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sample information, the known function m(·), and the unknown parameters. Solutions of the

above problem will be denoted by θ̂(τ), the quantile regression GMM (QR-GMM) estimator.

Identification, estimation, and inference of general (non-smooth) conditional moment re-

striction models as in (32) have received large attention in the econometrics literature. Identifi-

cation for nonlinear semiparametric and nonparametric conditional moment restrictions models

are presented in Chen, Chernozhukov, Lee, and Newey (2014). In addition, estimation and

inference have been discussed by, among others, Newey and McFadden (1994), Chen, Linton,

and van Keilegom (2003), Chen and Pouzo (2009), and Chen and Liao (2015).

In a recent contribution, Chen and Liao (2015) consider a semiparametric two-step GMM

for estimation and inference with weakly dependent data. Their model contains an additional

nonparametric element (a vector of unknown real-valued functions) and, hence, is more gen-

eral than that in equation (32), which only contains a vector of unknown finite dimensional

parameters, θ(τ). Thus, we specialize the more general results to our simpler case.17

Theorem 4.1 (Chen and Liao, 2015). Under standard regularity conditions, as T → ∞, the

estimator is consistent, i.e., θ̂
p→ θ0, and

√
T(θ̂− θ0)

d→ N(0,Vθ),

where Vθ = (H ′WH)−1(HWV1WH)(H
′WH)−1, V1 = Avar

(
1√
T

∑T
t=1 g(yt, xt, zt, θ0)

)
, and

H = ∂
∂θE[g(yt, xt, zt, θ)].

Given the result in Chen and Liao (2015) (Theorem 4.1), one is able to estimate the

variance-covariance matrix and conduct practical inference for the parameters of interest.

A few key observations should be noted. First, for a given random sample {(yt, xt, zt) :

t = 1, ...T }, we are able to apply the QR-GMM methods and estimate the parameters θ(τ)

across different quantiles τ. Second, for any given example, applying the QR-GMM requires

specifying the function m(·), the observable variables (yt, xt), and the information set Ωt, and

hence, the instruments zt. Note that in a very simple case zt = xt. The instruments are used

to achieve a valid orthogonality condition for the Euler equation, that is, the (conditional)

moment condition equals to zero. The idea is that by imposing certainty equivalence on

the nonlinear rational expectations model, the instruments help to circumvent some of the

difficulties in obtaining a complete characterization of the stochastic equilibrium.18 Third,

we can allow for conditional heteroskedasticity and can conduct statistical inference without

explicitly characterizing the dependence of the conditional variances on the information set. In

the context of the asset pricing models discussed in Section 5 below, for example, this feature

17This result is also given in Theorem 7.2 in Newey and McFadden (1994).
18In the literature, it is standard to estimate Euler equations for conditional average models by parametrizing

the utility function and estimating the parameters of interest using instrumental variables GMM (Hansen
(1982)).
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of our estimation procedure allows the conditional variances of asset yields to fluctuate with

movements of variables in the conditioning information set.

An interpretation for this procedure is that the τ-agent maximizes the τ-th quantile, and

the econometrician then wishes to learn about the potential underlying heterogeneity across

(agents) quantiles. We note that the theoretical methods do not impose restrictions across the

quantiles, and, thus, empirically the parameter estimates, as a function of the quantiles, might

(or might not) reveal the underlying heterogeneity. In fact, QR models are an important tool

to capture heterogeneity in applications. To gain intuition, we consider simple examples from

linear models with and without heterogeneity. Assume that yt is given by the following linear

model:

yt = β1 + β2xt + ut, (34)

where ut is an unobservable error term.

First, consider the case in which the data {yt, xt}
T
t=1 are independent and identically dis-

tributed (i.i.d.). When using the conditional expectation, the innovation term is assumed to

satisfy the following condition E[ut|xt] = 0. Thus, by applying the conditional expectation

operator on both sides of (34) and using the conditional mean zero, we obtain:

E[yt|xt] = β1 + β2xt. (35)

Therefore, one can estimate the parameters (β1,β2) by employing standard OLS or GMM

techniques, thus obtaining estimates (β̂1, β̂2). Notice that (35) gives only the conditional

expectation of yt given xt. From using it, one forgoes the possibility of learning about the

whole distribution of yt given xt.

In this simple i.i.d. case, the quantile functions are simply a vertical displacement of

one another with population parameters (β1 + F−1
τ ,β2) = (β1(τ),β2). To see this, take the

conditional quantile function on both sides of (34)

Qτ[yt|xt] = Qτ[β1 + β2xt + ut|xt]

= β1 + β2xt + F−1
τ [ut|xt]

= (β1 + F−1
τ [ut|xt]) + β2xt

= β1(τ) + β2xt.

This model allows only for a location shift, where (β1(τ),β2) and only β1 depends on the

quantile τ. Given the restriction F−1
τ [ut|xt] = 0, one applies QR to the above model to

obtain the estimates (β̂1(τ), β̂2(τ)). Notice that in this simple i.i.d. case there is absence of

heterogeneity and the estimates of β̂2 should not depend on the quantile τ. Hence, in the

nonexistence of heterogeneity, the model for the conditional average would estimate the same

β2 as that for the QR.
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In contrast, consider the heterogeneous case with heteroskedasticity as

yt = β1 + β2xt + σ(xt)εt, (36)

where ut ≡ σ(xt)εt and σ(xt) = (1 + γxt), for example. Taking the conditional quantile

functions of yt in (36)

Qτ[yt|xt] = β1 + β2xt + σ(xt)F
−1
τ [εt|xt]

= (β1 + F−1
τ [εt|xt]) + (β2 + γF−1

τ [εt|xt])xt

= β1(τ) + β2(τ)xt.

In this case both parameters (β1(τ),β2(τ)) that describe the quantile functions depend

on the quantile τ. Thus, the QR (β̂1(τ), β̂2(τ)) are estimates for the population parameters

(β1 + F−1
τ ,β2 + γF−1

τ ) = (β1(τ),β2(τ)). Therefore, when there is heterogeneity in the data,

the estimates of both coefficients should depend on the quantile τ. Finally, in the presence of

heterogeneity, the model for the conditional average would estimate β2 and, hence, not capture

any heterogeneity.

Remark 4.2. In this paper, we are interested in estimating the conditional quantile functions

to learn about the underlying heterogeneity among agents. Nevertheless, it is possible to see the

quantile τ as a parameter to be estimated together with the parameters θ0(τ). Bera, Galvao,

Montes-Rojas, and Park (2016) develop an approach that delivers estimates for the coefficients

together with a representative quantile. In their framework, τ captures a measure of asymmetry

of the conditional distribution of interest and is associated with the “most probable” quantile

in the sense that it maximizes the entropy.

5 Application: Asset Pricing Model

This section illustrates the usefulness of the new quantile utility maximization methods through

an empirical example. We apply the methodology to the standard asset-pricing model, which is

central to contemporary economics and finance. It has been used extensively in the literature

and has had remarkable success in providing empirical estimates for the study of the risk-

aversion and discount-factor parameters. We refer the readers to Cochrane (2005), Mehra

(2008), and Ljungqvist and Sargent (2012), and the references therein, for a comprehensive

overview.

We employ a variation of Lucas (1978)’s endowment economy (see, also, Hansen and Single-

ton (1982), Mehra and Prescott (1985) and Mehra and Prescott (2008)). The economic agent

decides on the intertemporal consumption and savings (assets to hold) over an infinity horizon

economy, subject to a linear budget constraint. The decision generates an intertemporal policy

function, which is used to estimate the parameters of interest for a given utility function.
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Let ct denote the amount of consumption good that the individual consumes in period t.

At the beginning of period t, the consumer has xt units of the risky asset, which pays dividend

zt. The price of the consumption good is normalized to one, while the price of the risky asset

in period t is p(zt). Then, the consumer decides how many units of the risky asset xt+1 to

save for the next period, and its consumption ct, satisfying:

ct + p(zt)xt+1 6 [zt + p(zt)] · xt, (37)

ct, xt+1 > 0. (38)

Using the notation introduced in (18), we can write the consumer problem as the maximization

of ∞∑
t=0

Qtτ

[
βtU(ct)

∣∣∣∣∣Ωt
]

, (39)

subjected to (37) and (38), where β ∈ (0, 1) is the discount factor, and U : R+ → R is the

utility function.

Because we have a single agent, the holdings must not exceed one unit. In fact, in equilib-

rium, we must have x∗tk = 1,∀t,k. Let x̄ > 1 and X = [0, x̄].

From (37), we can determine the consumption entirely from the current and future states,

that is, ct = zt · xt + p(zt) · (xt − xt+1). Following the notation of the previous sections, we

denote xt by x, xt+1 by y, and zt by z. Then, the above restrictions are captured by the

feasible correspondence Γ : X× Z→ X = X defined by:

Γ(x, z) ≡ {y ∈ X : p(z) · y 6 (z+ p(z)) · x} . (40)

For each pricing function p : Z→ R+, define the utility function as:

u(x,y, z) ≡ U [z · x+ p(z) · (x− y)] . (41)

We assume the following:

Assumption 3. (i) Z ⊆ R is a bounded interval and X = [0, x̄];

(ii) U : R+ → R is given by U(c) = 1
1−γc

1−γ, for γ > 0;

(iii) z follows a Markov process with pdf f : Z × Z → R+, which is continuous, symmetric,

f(z,w) > 0, for all (z,w) ∈ Z × Z and satisfies the property: if h : Z → R is weakly

increasing and z 6 z ′, then:∫
Z

h(α)f(α|z)dα 6
∫
Z

h(α)f(α|z ′)dα; (42)

(iv) z 7→ z+ p(z) is C1 and non-decreasing, with z (ln(z+ p(z))) ′ > γ.
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Assumptions 3(i) − (ii) are standard in economic applications. Assumption 3(iii) means

that a high value of the dividend today makes a high value tomorrow more likely. It implies

Assumption 2(ii). Assumption 3(iv), z 7→ z+ p(z) is non-decreasing, is natural. It states that

the price of the risky asset and its return are a non-decreasing function of the dividends. Note

that it is natural to expect that the price is non-decreasing with the dividends, but Assumption

3(iv) is even weaker than this, as it allows the price to decrease with the dividend; only z+p(z)

is required to be non-decreasing.19

Given Assumption 3, we can verify the assumptions for establishing the quantile utility

model in the asset pricing model context. Thus, we have the following:

Lemma 5.1. Assumption 3 implies Assumptions 1 and 2 and Theorem 3.16 holds.

Therefore, Theorems 3.9 and 3.10 imply the existence of a value function v, which is strictly

concave and differentiable in its first variable, satisfying

v(x, z) = max
y∈Γ(x,z)

Qτ[g(x,y, z, ·)|z],

where

g(x,y, z,w) = u (x,y, z) + βv(y,w).

Also, ∂v∂x = ∂u
∂x . Note that

∂u

∂x
(x,y, z) = U ′ [z · x+ p(z) · (x− y)] (z+ p(z)) ;

∂u

∂y
(x,y, z) = U ′ [z · x+ p(z) · (x− y)] (−p(z)) ;

Because, in equilibrium, the holdings are xt = 1 for all t, we can derive the Euler equation

as in (25) for this particular problem to obtain:

−p(zt)U
′ (ct) + βQτ[U

′ (ct+1) (zt+1 + p(zt+1))|Ωt] = 0. (43)

Let us define the return by:

1 + rt+1 ≡
zt+1 + p(zt+1)

p(zt)
. (44)

Therefore, the Euler equation in (43) simplifies to:

Qτ

[
β(τ)(1 + rt+1)

U ′(ct+1)

U ′(ct)

∣∣∣∣∣Ωt
]
= 1. (45)

19In our dataset, when regressing the returns on the dividends, we find a statistically positive correlation.
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The Euler equation in (45) possesses a nonlinear conditional quantile function representa-

tion as in (31). Thus, for a given utility function, one is able to estimate the parameters of

interest using the quantile regression GMM (QR-GMM) methods described in Section 4 above.

5.1 Estimation

In this application we follow a large body of the literature, as for example, Hansen and Singleton

(1982) and Stock and Wright (2000), among others, and use a constant relative risk aversion

(CRRA) utility function as

U(ct) =
1

1 − γ
c
1−γ
t ,

for γ > 0. The parameter γ is the standard measure the degree of relative risk aversion that

is implicit in the utility function.

The ratio of marginal utilities can be written as

U ′(ct+1)

U ′(ct)
=

(
ct+1

ct

)−γ

. (46)

Finally, from equations (45) and (46), the Euler equation can be rewritten as

Qτ

[
β(τ)(1 + rt+1)

(
ct+1

ct

)−γ(τ)

− 1

∣∣∣∣∣Ωt
]
= 0. (47)

After deriving the Euler equation in (47), we aim to estimate the parameters of interest

(γ(τ),β(τ)). Given a random sample {(rt, ct) : t = 1, ...T }, we are able to apply the QR-GMM

methods and, for each quantile τ ∈ (0, 1), estimate the corresponding parameters (γ(τ),β(τ)).

In this way, we uncover the potential underlying heterogeneity across the quantiles.

Notice that there are two measures of riskiness in this model. First, for a fixed quantile τ,

γ(τ) captures the relative risk aversion, for which a larger γ(τ) signifies a larger risk aversion.

Second, the model also captures the risk across quantiles. Theorem 2.1, in Section 2.3 above,

predicts that the agent that maximizes the larger quantile is more risk taker; thus, the theorem

suggests that the coefficient of relative risk aversion should decrease over the quantiles, that is

γ(τ ′) < γ(τ) for τ ′ > τ.

Several considerations are in order when estimating the parameters in (47). First, equation

(47) is an equilibrium condition. This is commonly used in the literature to derive orthogonality

conditions based on instrumental variables that can be used to estimate the parameters of the

utility function. In this paper, for simplicity, we abstract from the instruments, as a first

approach to the problem, and estimate the parameters with a nonlinear quantile regression

model of the excess of returns on the ratio of consumption.20 Second, when bringing (47) to

20In spite of that, as we will see below, our estimates for average models are very close to those in the existing
literature.
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the data, rational expectations is an underlying assumption. This means that the conditional

quantile function operator in (47) coincides with the theoretical given all information available

to the consumer at time t. Thus, the conditional quantile function is valid over time. Third,

we abstract from the presence of the “taste-shock” (or measurement error). All of these

assumptions and simplifications have been largely discussed in terms of models for estimating

conditional averages (see, e.g., Attanasio and Low (2004)). Because the main objective of

this paper is to provide a first view of the quantile utility maximization problem, we use these

assumptions for simplicity. Nevertheless, extending the methods to relax these assumptions, for

example, considering instrumental variables and measurement errors, is an important direction

for future research. Finally, we restrict the discount factor coefficients to satisfy β(τ) < 1 for

all quantiles and estimate both parameters of interest simultaneously.

It is also important to note that, recently, there has been an attempt to allow for heterogene-

ity in dynamic nonlinear rational expectation models, especially in the context of estimating

the coefficient of risk aversion. A class of models allows for heterogeneity across agents in lieu

of a single representative agent. Nevertheless, although the individuals are heterogeneous, it

is usual to impose the assumption of homogeneous parameters across individuals; that is, the

coefficient of risk aversion is common across individuals. This former condition has become

standard in the literature (see, e.g, Heaton and Lucas (2008)). As an alternative, Mazzocco

(2008) develops a two-agent model wherein the risk-aversion is allowed to vary for both agents.

Moreover, Herranz, Krasa, and Villamil (2015) capture heterogeneity in risk-aversion by im-

posing distributional assumptions on the coefficient of risk aversion; in particular, they assume

that it is normally distributed. However, all of these constraints might be seen as excessively

strong and this paper moves in the direction of relaxing them. We develop a complement and

alternative to these models by considering the quantile utility maximization, whereby we are

able to estimate the parameters indexed by the corresponding quantiles.

5.2 Data

We use a data set that is common in the literature for modeling stock prices, as discussed

in the previous section. We use monthly data from 1959:01 to 2015:11, which produces 683

observations. As is standard in the literature (see, e.g., Hansen and Singleton (1982)), two dif-

ferent measures of consumption were considered: nondurables, and nondurables plus services.

The monthly, seasonally adjusted observations of aggregate nominal consumption (measured

in billions of dollars unit) of nondurables and services were obtained from the Federal Re-

serve Economic Data. Real per capita consumption series were constructed by dividing each

observation of these series by the corresponding observation of population, deflated by the

corresponding CPI (base 1973:01).

Each measure of consumption was paired with four sets of stock returns from the Center for

Research in Security Prices (CRSP) U.S. Stock database, which contains month-end prices for
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Figure 1: Nondurables plus services and VWR without dividends
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primary listings for the New York Stock Exchange (NYSE). We use the value-weighted average

return (VWR) (including dividends or excluding dividends) on all stocks listed on the NYSE.

In addition, we employ the equally-weighted average of returns (EWR) (including dividends

or excluding dividends) on the NYSE. The nominal returns were converted to real returns by

dividing by the deflator associated with the measure of consumptions.

5.3 Results

Now we present the results. Because the literature reports results for conditional mean models,

for comparison purposes, we also estimate the standard conditional expectation regression

GMM (ER-GMM) version of the model.

The results for the estimates of the parameters of interest are reported in Figures 1–4.

The panels on the left display the relative risk aversion coefficients, and the panels on the

right, the discount factor. We present estimates using both consumption of nondurables, and

nondurables plus services. We also provide the results for stock return VWR, with and without

dividends. For brevity, we omit the results for the stock return EWR; nevertheless, the results

are very similar. In addition, the figures present results for the coefficients and confidence

bands, for a range of quantiles, for QR-GMM and ER-GMM (straight red lines), respectively.

The dashed region in each panel represents the 95% confidence interval.

Figure 1 presents standard QR-GMM and ER-GMM estimates of the coefficient of relative

risk-aversion γ and discount factor β, using consumption of nondurables plus services and

stock return VWR without dividends for the relative risk-aversion estimates. The plot on

the left displays the relative risk-aversion estimates. The first interesting observation is that

the results document strong evidence of heterogeneity in the coefficient of the risk-aversion
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Figure 2: Nondurables plus services and VWR with dividends
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factor across quantiles. In particular, Figure 1 shows that the coefficient of risk aversion is

relatively larger for lower quantiles, achieving values around 7. In addition, the coefficient

of risk aversion decreases when the quantile index increases. This result is consistent with

the result in Theorem 2.1 (Manski (1988)), which shows that the agent that maximizes the

higher quantile is the more risk-loving. We find risk aversion estimates of 1.45 for the median,

which is in line with literature, for example Herranz, Krasa, and Villamil (2015) (1.5–1.56) and

Mazzocco (2008) (1.7 for men) and parameter values used in the real business-cycle literature.

Regarding the conditional average result, the ER-GMM estimate is 2, with a standard error of

0.73. Using GMM methods, Hansen and Singleton (1982) estimate the coefficient of relative

risk-aversion between 0.05 and 0.32. More recently, Stock and Wright (2000) present a 90%

a confidence interval for the coefficient of risk aversion ranging from −2.0 to 2.3. Thus, the

overall results obtained here for conditional median and average models are relatively close to

those in the literature. Nevertheless, different from the literature, our work is able to uncover

strong heterogeneity, especially at the tails.

The estimates for the discount factor, in the right plot of Figure 1, also are interesting.

First, the figure shows that, for low quantiles, the discount factor reaches the boundary and,

hence, is close to unity. Second, the figure shows heterogeneity in the discount factor parameter

for the upper quantiles. Overall, Figure 1 shows evidence that the discount factor is larger for

lower quantiles. That is, the more risk averse the agents, the more patient they are.

Remark 5.2. It should be noted that our model does not control for income or wealth. Thus,

the agents that correspond to low quantiles do not necessarily correspond to low income, but to

low risk aversion. This observation is important to avoid confusion with the results in a branch

of the literature that links discount factors with income and wealth (see, e.g., Hausman (1979),

29



Figure 3: Nondurables and VWR without dividends
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and Lawrance (1991)). Moreover, there is empirical evidence that documents small discount

factors estimates. This literature estimates discount factors by using a quasi-hyperbolic dis-

count function (see, e.g., Paserman (2008), Fang and Silverman (2009), and Laibson, Maxted,

Repetto, and Tobacman (2015)). In contrast to these streams of literature, this paper abstracts

from a relationship between discount rates and poverty and employs a simple model to esti-

mate the discount factor. Our objective is to illustrate the potential empirical application of

the quantile utility maximization model. We leave the connection with income and wealth and

related extensions for future research.

The results for the estimates of the coefficient of risk aversion in Figure 1 also might

help to shed light on the equity premium puzzle (Mehra and Prescott (1985)). As Mehra

and Prescott (2008) state, the standard theory is consistent with the notion of risk that, on

average, stocks should return more than bonds. The puzzle arises from the fact that the

quantitative predictions of theory are an order of magnitude different from what has been

historically documented; that is, the coefficient of risk aversion required would need to be

much larger than the one observed from estimated models. Nevertheless, the results from

the QR-GMM estimates of the quantile utility model document strong heterogeneity across

quantiles. Thus, if one interprets different quantiles as different individuals, there is strong

heterogeneity for the coefficient of risk-aversion and, hence, the discrepancy on returns could

be rationalized with different coefficients of risk aversion among economic agents. Thus, these

results make it possible to reconcile the relative large spread observed between the risk-free and

risky assets with the large relative risk aversion of an individual who is solving the intertemporal

optimization problem for lower quantiles.

Figures 2–4 serve as robustness checks and display the estimates for our proposed methods.
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Figure 4: Nondurables and VWR with dividends
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The results are qualitatively similar to those in Figure 1. The coefficients of relative risk-

aversion, in the panels in the left of the figures, present strong heterogeneity over the quantiles.

The relative risk aversion decreases across quantiles, being larger for lower quantiles and smaller

for upper quantiles. This result is consistent with the theoretical predictions in terms of risk

when using the quantile utility maximization model. The results suggest that agents behave

in a more risk averse manner for the lower part of the conditional distribution of stock returns.

In contrast, for upper quantiles, the risk aversion is smaller, providing evidence that agents

behave in a more risk-loving manner. In addition, the discount factor estimates, in the panels

in the right of the figures, present heterogeneity across quantiles, especially for upper quantiles.

The discount factor is smaller for more risk-taking agents, which suggests that those agents are

less patient. On the contrary, for lower quantiles, the risk aversion is large, as is the discount

factor, providing evidence that more risk-averse agents are more patient.

From the Figures 1–4, we note that all of the QR estimates show the same pattern; that

is, both the relative risk aversion and discount factor decrease as a function of the quantiles.

The variability of the effects is the most apparent and dramatic in the tails of the conditional

distribution of returns, whereas the ER-GMM point estimates are relatively smaller.

In all, the application illustrates that the new methods serve as an important tool to

study economic behavior, in particular, asset pricing. The methods allow one to uncover

heterogeneity by estimating the relative risk aversion and discount factor at different quantiles,

which might be viewed as reflecting the different risk behavior of agents. Our empirical results

document heterogeneity of risk-aversion and discount factor, providing empirical evidence that

it would be possible to reconcile the equity premium puzzle when investigating the entire

distribution instead of concentrating only on the mean.
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6 Summary and Open Questions

This paper develops a dynamic model of rational behavior under uncertainty for an agent

maximizing the quantile utility function indexed by a quantile τ ∈ (0, 1]. More specifically,

an agent maximizes the stream of future τ-quantile utilities, where the quantile preferences

induce the quantile utility function. We show dynamic consistency of the preferences and that

this dynamic problem yields a value function, using a fixed-point argument. We also obtain

desirable properties of the value function. In addition, we derive the corresponding Euler

equation. The quantile utility maximization model allows us to account for heterogeneity

through the quantiles.

Empirically, we show that one can employ existing general (non-smooth) generalized method

of moments methods for estimating and testing the rational quantile models directly from

stochastic Euler equations. An attractive feature of this method is that the parameters of the

dynamic objective functions of economic agents can be interpreted as structural objects. Fi-

nally, to illustrate the methods, we construct an asset-pricing model and estimate the implied

risk aversion and discount factor parameters. The results suggest evidence of heterogeneity

in both parameters, as both risk aversion and discount factor decrease as a function of the

quantiles.

Many issues remain to be investigated. The extension of the quantile maximization model

from considering a single quantile to multiple quantiles simultaneously would be important.

Extensions of the methods to general equilibrium models pose challenging new questions. In

addition, aggregation of the quantile preferences is also a critical direction for future research.

Applications to asset pricing and consumption models would appear to be a natural direction

for further development of quantile utility maximization models.
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7 Appendix

7.1 Properties of Quantiles

The following picture illustrates the c.d.f. F of a random variable X, and its corresponding quantile

function Q(τ) = inf{α ∈ R : F(α) > τ}, for τ > 0.21 In this case, X assumes the value 3 with 50%

probability and is uniform in [1, 2] ∪ [4, 5] with 50% probability. This picture is useful to inspire some

of the properties that we state below. Note, for instance, the discontinuities and the values over which

the quantile is constant.
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Figure 5: c.d.f. and quantile function of a random variable.

The following lemma is an auxiliary result that will be helpful for the derivations below.

Lemma 7.1. The following statements are true:

(i) Q is increasing, that is, τ 6 τ̂ =⇒ Q(τ) 6 Q(τ̂).

(ii) limτ↓τ̂Q(τ) > Q(τ̂).

(iii) Q is left-continuous, that is, limτ↑τ̂Q(τ) = Q(τ̂).

(iv) Pr ({z : z < Q(τ)}) 6 τ 6 Pr ({z : z 6 Q(τ)}) = F (Q(τ)).

(v) If g : R→ R is a continuous and strictly increasing function, then Qτ[g(X)] = g (Qτ[X]).

(vi) If g,h : R→ R are such that g(α) 6 h(α),∀α, then Qτ[g(Z)] 6 Qτ[h(Z)].

(vii) F is continuous if and only if Q is strictly increasing.

(viii) F is strictly increasing if and only if Q is continuous.

Proof. (i) Let us first assume τ > 0. If τ 6 τ̂, then {α ∈ R : FZ(α) > τ} ⊇ {α ∈ R : FZ(α) > τ̂}.

This implies QZ(τ) 6 QZ(τ̂). Next, if sup{α ∈ R : FZ(α) = 0} = −∞, there is nothing else to

prove. If sup{α ∈ R : FZ(α) = 0} = x ∈ R, then FZ(x − ε) = 0 for any ε > 0. Let τ̂ > 0. Then,

y ∈ {α ∈ R : FZ(α) > τ̂} =⇒ y > x− ε, which in turn implies QZ(τ̂) > x− ε. Since ε > 0 is arbitrary,

this implies QZ(τ̂) > x = QZ(0), which concludes the proof.

(ii) From (i), limτ↓τ̂QZ(τ) > infτ>τ̂Qz(τ) > Qz(τ̂). Figure 5 illustrates (for example for τ̂ = 0.25)

that the inequality can be strict.

(iii) From (i), we know that limτ↑τ̂QZ(τ) 6 Qz(τ̂). For the other inequality, assume that

limτ↑τ̂QZ(τ) + 2ε < Qz(τ̂) < ∞, for some ε > 0. This means that for each k ∈ N, we can find

21For τ = 0, Q(0) = sup{α ∈ R : F(α) = 0} is just the lower limit of the support of the variable.
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αk ∈ {α : FZ(α) > τ̂ − 1
k
} such that QZ(τ̂ −

1
k
) 6 αk 6 QZ(τ̂ − 1

k
) + ε < QZ(τ̂) − ε. We may as-

sume that {αk} is an increasing sequence bounded by Qz(τ̂) and thus converges to some ᾱ ∈ R. Then,

limτ↑τ̂QZ(τ) 6 ᾱ 6 Qz(τ̂) − ε < Qz(τ̂). Since FZ(α
k) > τ̂ − 1

k
and FZ is upper semi-continuous,

FZ(ᾱ) > τ̂, which implies that ᾱ > QZ(τ̂), a contradiction. Now, assume that QZ(τ̂) = ∞. Since

limα→∞ FZ(α) = 1, the set {α ∈ R : FZ(α) > τ} is non-empty for all τ < 1, that is, QZ(τ) < ∞ for all

τ < 1. Thus, τ̂ = 1. If limτ↑1QZ(τ) = x ∈ R, then FZ(x + 1) > 1 − ε for all ε > 0, which implies that

FZ(x+ 1) = 1 and QZ(1) 6 x+ 1, a contradiction.

(iv) As above, if QZ(τ) = ∞, then τ = 1, which implies 1 = Pr ({w : z <∞}) = Pr ({w : z 6∞})

and there is nothing to prove. Let ᾱ = QZ(τ) < ∞. If αk ↓ ᾱ is such that FZ(α
k) > τ, then

FZ(ᾱ) > τ, by the well-known upper-semicontinuity of FZ. That is, τ 6 FZ(QZ(τ)). For the other

inequality, let αk ↑ ᾱ = QZ(τ). Since αk < ᾱ, then Pr[Z 6 αk] < τ, by the definition of ᾱ. Thus,

Pr[Z < αk] 6 Pr[Z 6 αk] < τ and Pr[Z < ᾱ] 6 supk Pr[Z < αk] 6 τ.

(v) The proof is direct as follows:

Qτ(g(Z)) = inf{α ∈ R : Pr [g(Z) 6 α] > τ}

= inf{α ∈ R : Pr
[
Z 6 g−1(α)

]
> τ}

= inf{α ∈ R : g−1(α) = β, Pr [Z 6 β] > τ}

= inf{g(β) : Pr [Z 6 β] > τ}

= g (inf{β : Pr [Z 6 β] > τ})

= g (Qτ(Z)) .

(vi) Since g 6 h, then for any α, {z : g(z) 6 α} ⊇ {z : h(z) 6 α}, which implies Fg(Z)(α) = Pr [g(Z) 6 α] >

Pr [h(Z) 6 α] = Fh(Z)(α). If τ > 0, {α ∈ R : Pr [g(Z) 6 α] > τ} ⊇ {α ∈ R : Pr [h(Z) 6 α] > τ̂}. Taking

infima, we obtain Qg(Z)(τ) 6 Qh(Z)(τ). On the other hand, {α ∈ R : Fh(Z)(α) = 0} ⊂ {α ∈ R :

Fg(Z)(α) = 0} and taking the supremum in both sides we obtain the same conclusion.

(vii) Assume that FZ is discontinuous at x0, that is, limx↑x0 FZ(x) = y0 < y1 = FZ(x0). If y0 <

y2 < y3 < y1, then QZ(y2) = inf{α : FZ(α) > y2} = inf{α : FZ(α) > y3} = QZ(y3), that is, QZ is not

strictly increasing. Conversely, assume that QZ is not strictly increasing, that is, there exists y2 < y3

such that QZ(y2) = QZ(y3) = x. By definition, this means that FZ(x − ε) < y2 < y3 6 FZ(x + ε), for

all ε > 0. But this implies that FZ is not continuous at x.

(viii) Suppose that FZ is not strictly increasing, that is, there exists x1 < x2 such that FZ(x1) =

FZ(x2) = y. Then, QZ(y−ε) = inf{α : FZ(α) > y−ε} 6 x1 < x2 6 inf{α : FZ(α) > y+ε} = QZ(y+ε).

Thus, QZ cannot be continuous at y. Conversely, assume that QZ is not continuous at y0. Since QZ

is increasing by (i) and left-continuous by (iii), this means that QZ(y0) = x0 < x1 = limy↓y0
QZ(y). If

x0 < x2 < x1, then FZ(x2) 6 y0, otherwise limy↓y0
QZ(y) 6 x2. By (iv), we have y0 6 FZ(QZ(y0)) =

FZ(x0) 6 FZ(x2) 6 y0 , that is, FZ is not strictly increasing between x0 and x2.

Let Θ be a set (of parameters) and g : Θ × Z × Z → R be a measurable function. We denote by

Qτ[g(θ, ·)|z] the quantile function associated with g, that is:

Qτ[g(θ, ·)|z] ≡ inf{α ∈ R : Pr ([g(θ,W) 6 α]|Z = z) > τ}. (48)

The following Lemma generalizes equation (2) to conditional quantiles.
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Lemma 7.2. Let g : Θ× Z→ R be non-decreasing and left-continuous in Z. Then,

Qτ[g(θ, ·)|z] = g (θ, Qτ[w|z]) . (49)

It is useful to illustrate the above result with an example. Let us define the function gab : [1, 5]→ R
by:

gab(x) =


7, if x < a

b, if x = a

10, if x > a

The function gab thus defined is non-decreasing if b ∈ [7, 10] and it is left-continuous if b = 7.

Consider the r.v. X whose c.d.f. F and quantile function Q are shown in Figure 5 above. Let Fab

and Qab denote respectively the c.d.f. and quantile functions associated to gab(Z). Figure 6 shows

Qτ[gab(w)|z] and gab (Qτ[w|z]) for a ∈ [1, 5] and b ∈ [7, 10]. The point of discontinuity is a function

of a (h(a) ∈ [0, 1]).

τ

gab (Qτ[w|z])

7

10

h(a) 1

b

τ

Qτ[gab(w)|z]

7

10

h(a) 1

Figure 6a: gab (Qτ[w|z]). Figure 6b: Qτ[gab(w)|z].

Proof of Lemma 7.2: For a contradiction, let us first assume that

Qτ[g(θ, ·)|z] > g (θ, Qτ[w|z]) ≡ α̂.

This means that α̂ /∈ {α ∈ R : Pr ({w : g(θ,w) 6 α}|z) > τ}, that is,

Pr ({w : g(θ,w) 6 α̂}|z) < τ.

Since α̂ = g (θ, Qτ[w|z]) and g is non-decreasing in w, {w : w 6 Qτ[w|z]} ⊂ {w : g(θ,w) 6 α̂}. Thus,

Pr ({w : w 6 Qτ[w|z]}|z) < τ, but this contradicts Lemma 7.1(iv).

Conversely, assume that

Qτ[g(θ, ·)|z] < g (θ, Qτ[w|z]) .

This means that there exists α̃ < g (θ, Qτ[w|z]) such that

Pr ({w : g(θ,w) 6 α̃}|z) > τ.

Let w̃ be the supremum of the set {w : g(θ,w) 6 α̃}. Since g is non-decreasing and left-continuous,

g(θ, w̃) 6 α̃. Moreover,

Pr ({w : w 6 w̃}|z) = Pr ({w : g(θ,w) 6 α̃}|z) > τ.
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Thus, w̃ ∈ {α ∈ R : Pr ({w : w 6 α}|z) > τ}, which implies that w̃ > Qτ[w|z]. Thus, α̃ > g (θ, w̃) >

g (θ, Qτ[w|z]) > α̃, which is a contradiction.

The following Corollary to the above Lemma will be useful.

Corollary 7.3. Let T ∈ N ∪ {∞}, h : Θ × ZT × Z → R, g : Λ × ZT × Z → R be non-decreasing and

left-continuous in Z. Then,

Qτ
[
h(θ, zT , Qτ[g(λ, zT , zt+1)|zt])|z1

]
= Qτ

[
h
(
θ, zT ,g(λ, zT , Qτ[zt+1|zt])

)
|z1
]

.

Proof. Let X denote the random variable Qτ[g(λ, zt, zt+1)|zt]) and similarly, let Y denote g(λ, zt, Qτ[zt+1|zt]).

Then, by Lemma 7.2, X = Y. Therefore, h(θ, zt,X) = h(θ, zt, Y) and the result follows.

The following result will be useful below.

Proposition 7.4. Given the random variables X and Y, assume that there exists random variable Z

and continuous and increasing functions h and g such that X = h(Z) and Y = g(Z). Then Qτ[X+ Y] =

Qτ[X] + Qτ[Y].

Proof. Let Z, h and g be as in the definition. Define h̃(Z) ≡ h(Z) + g(Z). This function is clearly

continuous and increasing. Therefore,

Qτ[X+ Y] = Qτ[h(Z)] = h(Qτ[Z]) = h(Qτ[Z]) + g(Qτ[Z])

= Qτ[h(Z)] + Qτ[g(Z)] = Qτ[X] + Qτ[Y].

by applying Lemma 7.2 twice.

7.2 Proofs of Section 3

Proof of Theorem 3.4: This is essentially the same proof of Theorem 3.9, presented in detail below.

Thus, we omit it.

Proof of Proposition 3.5: Let L be a bound for Vπ. Using repeated times the recursive property

(13), we can write

Vπ(x, z) = u(xπ1 , xπ2 , z1) + Qτ

[
βu(xπ2 , xπ3 , z2) + Qτ

[
β2u(xπ3 , xπ4 , z3) + . . .

. . . + Qτ

[
βnu(xπn+1, xπn+2, zn) + β

n+1Vπ(xπn,Zn)
]∣∣∣Zn = zn

]
. . .

∣∣∣∣Z1 = z

]

6 u(xπ1 , xπ2 , z1) + Qτ

[
βu(xπ2 , xπ3 , z2) + Qτ

[
β2u(xπ3 , xπ4 , z3) + . . .

. . . + Qτ

[
βnu(xπn+1, xπn+2, zn) + β

n+1L
]∣∣∣Zn = zn

]
. . .

∣∣∣∣Z1 = z

]
= Vn(x, z) + βn+1L,
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where in the last line we have used the property of quantiles that Qτ[X+α] = α+Qτ[X] for α ∈ R; see

Lemma 7.2. Repeating the same argument with the lower bound −L, we can write:

Vn(x, z) − βn+1L 6 Vπ(x, z) 6 Vn(x, z) + βn+1L.

This concludes the proof.

Proof of Proposition 3.7: Let Ω = {1, 2, 3, 4} and P({ω}) = 1/4 for all ω ∈ Ω. Define Σ0 = {∅,Ω}

and Σ1 = {∅,E1,E2,Ω}, where E1 = {1, 2} and E2 = {3, 4}. Let X(ω) = ω. Then for τ ∈ (0.5, 0.75),

Qτ[X|Σ1]ω =

{
2, if ω ∈ E1
4, if ω ∈ E2

Therefore, Qτ[Qτ[X|Σ1]|Σ0] = 4 but Qτ[X|Σ0] = Qτ[X] = 3, which establishes (19).

To see (20), consider Ω = [0, 4], Σ0 = {∅,Ω} and let Σ1 be generated by the partition {E1,E2}, where

E1 = [1, 2) and E2 = [2, 4]. Consider P as the uniform distribution on Ω. Let X and Y be two random

variables with c.d.f. given respectively by FX(x) = 1
4

[
x− 1

4 sin (πx)
]

and FY(x) = 1
4

[
x+ 1

4 sin (πx)
]
.

The graphs of these two c.d.f.s are shown in Figure 7 below. Let τ ∈ (0.5, 0.75).

ω

FX, FY

1

5
16

5
8

13
16

Qτ[Y|E1] < Qτ[X|E1]

< Qτ[Y]Qτ[X]

Qτ[Y|E2] <Qτ[X|E2]

Figure 7: Graph of X and Y, with respective quantiles.

In the graph above, we plot the quantiles for τ = 5
8 ∈ (0.5, 0.75). We can easily see that

Qτ[X|Σ1](ω) > Qτ[Y|Σ1](ω),∀ω ∈ Ω, but Qτ[X] = Qτ[X|Σ0] < Qτ[Y|Σ0] = Qτ[Y], that is, (20) holds.

Proof of Theorem 3.8: Assume that plans π and π ′ are such that πt′(·) = π ′t′(·) for all t ′ 6 t

and π ′ �t+1,Ω′
t+1,x

π for all Ω ′t+1, x. From (9), this means that

Vt+1(π
′, x, zt+1) > Vt+1(π, x, zt+1),∀(x, zt) ∈ X× Zt+1. (50)
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Therefore,

Vt(π
′, x, zt) = u(xπ

′

t , xπ
′

t+1, zt) + βQτ
[
Vt+1(π

′, x, (Zt, zt+1))
∣∣Zt = zt]

> u(xπ
′

t , xπ
′

t+1, zt) + βQτ
[
Vt+1(π, x, (Zt, zt+1))

∣∣Zt = zt]
= u(xπt , xπt+1, zt) + βQτ

[
Vt+1(π, x, (Zt, zt+1))

∣∣Zt = zt]
= Vt(π

′, x, zt),

where the first and last equalities come from the recursive equation (13), the first inequality comes from

(50) and Lemma 7.1(vi), while the equality in the third line comes from the fact that the plans aggree

on all times up to t, that is, xπ
′

t = xπt and xπ
′

t+1 = π ′t(x
π
t , zt) = πt(x

π
t , zt) = xπt+1. This establishes the

claim.

Proof of Theorem 3.9: We organize the proof in a series of Lemmas.

Lemma 7.5. If v ∈ C, the map (y, z) 7→ Qτ[v(y,w)|z] is continuous.

Proof. Consider a sequence (yn, zn)→ (y∗, z∗). Since v and f are continuous, v(yn,w)→ v(y∗,w) and

mn(α) ≡ Pr ({w : v(yn,w) 6 α}|zn)→ Pr ({w : v(y∗,w) 6 α}|z∗) ≡ m∗(α). (51)

Let αn ≡ inf{α ∈ R : mn(α) > τ} = Qτ[v(y
n, ·)|zn] and α∗ ≡ inf{α ∈ R : m∗(α) > τ} = Qτ[v(y

∗, ·)|z∗].
We want to show that αn → α∗.

In general, mn(·) and m∗(·) may fail to be continuous, but they are right-continuous and (weakly)

increasing by Lemma 7.1. Moreover, m∗ andmn are strictly increasing in the range of v. More precisely,

for each y, define R(y) ≡ {α ∈ R : ∃w such that v(y,w) = α}. We claim that if α < α ′,α,α ′ ∈ R(y),
then m∗(α ′) > m∗(α), and similarly for mn.22

Indeed, assume that ∃w,w ′ such that v(y,w) = α and v(y,w ′) = α ′. The set P = {αw+(1−α)w ′ :

α ∈ [0, 1]} is contained in Z because this is convex. Thus, {v(y,p) : p ∈ P} is connected, that is, a

nonempty interval. We conclude that, since v is continuous, the set {w ∈ Z : α < v(y,w) < α ′} is

a nonempty and open interval. (This implies, in particular, that R(y) is an interval.) Since f(·|z) is

strictly positive in Z, we conclude that

m∗(α ′) −m∗(α) > Pr ({w ∈ Z : α < v(y,w) < α ′}|z) > 0,

which establishes the claim. By Lemma 7.1(iv), we have

mn(αn) > τ and m∗(α∗) > τ. (52)

We will show that αn → α∗ by first establishing lim infn α
n > α∗ and then α∗ > lim supn α

n.

Suppose that α ≡ lim infn α
n < α∗. This means that there exists ε > 0 and for each j, nj > j

such that αnj < α + ε < α∗. By the definition of α∗, α < α∗ implies m∗(α) < τ. However, by (52),

22Note that mn and m∗ are the corresponding c.d.f. functions for v. Thus, proving that those functions are
strictly increasing in the range of v leads to continuity of the quantile with respect to τ, by (an adaptation of)
Lemma 7.1(viii). But this is not what we need: we want continuity in (y, z). We prefer to offer here a direct
and detailed argument, although long.
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mnj(αnj) > τ, which implies mnj(α) > τ and m∗(α) > τ, by (51). This contradiction establishes that

lim infn α
n > α∗.

If ᾱ ≡ lim supn α
n > α∗, there exists ε > 0 and for each j, nj > j such that

ᾱ+ ε > αnj > ᾱ− ε > ᾱ− 2ε > α∗ + ε. (53)

Recall that αn = inf{α ∈ R : mn(α) > τ}. Therefore, αnj > ᾱ − ε implies mnj(ᾱ − ε) < τ. Thus,

mnj(α∗ + ε) < mnj(ᾱ− ε) < τ. This implies that

m∗(α∗) 6 m∗(ᾱ− 2ε) 6 m∗(ᾱ− ε) = lim
n
mnj(ᾱ− ε) 6 τ 6 m∗(α∗).

Therefore, m∗ is constant between α∗ and ᾱ − 2ε. This will be a contradiction if we show that

α∗, ᾱ− 2ε ∈ R(y∗).
Since m∗(α∗) = Pr ({w : v(y∗,w) 6 α∗}|z∗) > τ > 0, {w : v(y∗,w) 6 α∗} 6= ∅ and there exists some

α ∈ R(y∗)∩ (−∞,α∗]. On the other hand, if {w : ᾱ− 2ε 6 v(y∗,w) 6 ᾱ+ 2ε} = ∅, then for sufficiently

high j, {w : ᾱ − ε 6 v(ynj ,w) 6 ᾱ + ε} = ∅. In this case, mnj(ᾱ − ε) = mnj(ᾱ + ε) ≡ τnj . But

this would imply either αnj 6 ᾱ − ε, if τnj > τ or αnj > ᾱ + ε, if τnj < τ. In either case, we have a

contradiction with αnj ∈ (ᾱ− ε, ᾱ+ ε) as required in (53). This contradiction shows that there exists

α ′ ∈ R(y∗)∩ [ᾱ−2ε, ᾱ+2ε]. Since α,α ′ ∈ R(y∗), we have [α∗, ᾱ−2ε] ⊂ [α,α ′] ⊂ R(y∗). This concludes

the proof.

Lemma 7.6. For each v ∈ C the supremum in (21) is attained and Mτ(v) ∈ C. Moreover, the optimal

correspondence Υ : X× Z⇒ X defined by

Υ(x, z) ≡ arg max
y∈Γ(x,z)

Qτ[u (x,y, z) + βvτ(y,w)|z] (54)

is nonempty and upper semi-continuous.

Proof. Let

g(x,y, z,w) = u (x,y, z) + βv(y,w). (55)

By Lemma 7.2, Qτ[g(x,y, z, ·)|z] = u (x,y, z) + βQτ[v(y, ·)|z]. By Lemma 7.5, Qτ[g(x,y, z, ·)|z] is con-

tinuous in (x,y, z). From Berge’s Maximum Theorem, the maximum is attained, the value function

Mτ(v) is continuous and Υ is nonempty and upper semi-continuous. Mτ(v) is bounded because u and

v, hence g, are bounded. Therefore, Mτ(v) ∈ C.

We conclude the proof of Theorem 3.9 by showing that Mτ satisfies Blackwell’s sufficient conditions

for a contraction.

Lemma 7.7. Mτ satisfies the following conditions:

(a) For any v, v ′ ∈ C, v 6 v ′ implies Mτ(v) 6Mτ(v ′).

(b) For any a > 0 and x ∈ X, M(v+ a)(x) 6M(v)(x) + βa, with β ∈ (0, 1).

Then, ‖M(v) −M(v ′)‖ 6 β‖v − v ′‖, that is, M is a contraction with modulus β. Therefore, Mτ has a

unique fixed-point vτ ∈ C.
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Proof. To see (a), let v, v ′ ∈ C, v 6 v ′ and define g as in (55) and analogously for g ′, that is,

g ′(x,y, z,w) = u (x,y, z) + βv ′(y,w). It is clear that g 6 g ′. Then, by Lemma 7.1(vi), Qτ[g(·)|z] 6
Qτ[g

′(·)|z], which implies (a).

To verify (b), we use the monotonicity property (Lemma 7.2):

Qτ[u(x,y, z) + β(v(x, z) + a)|z] = Qτ[u(x,y, z) + βv(x, z)|z] + βa.

Thus, Mτ(v+ a) = Mτ(v) + βa, that is, (b) is satisfied with equality.

Proof of Theorem 3.10: Let assumption 2 hold. It is convenient to introduce the following

notation. Let C ′ ⊂ C be the set of the functions v : X× Z→ R which are concave in its first argument.

It is easy to see that C ′ is a closed subset of C. Let C ′′ ⊂ C ′ be the set of strictly concave functions. If

we show that Mτ(C ′) ⊂ C ′′, then the fixed-point of Mτ will be strictly concave in x. (See, for instance,

Stokey, Lucas, and Prescott (1989, Corollary 1, p. 52).)

Lemma 7.8. Let assumption 2 hold. Mτ(C ′) ⊆ C ′′. Therefore, vτ ∈ C ′′. Moreover, the optimal

correspondence Υ : X × Z ⇒ X defined by (54) is single-valued. Therefore, we can denote it by a

function y∗(x, z).

Proof. Let α ∈ (0, 1), and consider x0, x1 ∈ X, x0 6= x1. For i = 0, 1, let yi ∈ Γ(xi, z) attain the

maximum, that is,

Mτ(v) (xi, z) = u(xi,yi, z) + βQτ[v(yi,w)|z] = Qτ[g(xi,yi, z,w)|z].

Let xα ≡ αx0 + (1 − α)x1 and yα ≡ αy0 + (1 − α)y1. First, let us observe that

g (xα,yα, z,w) = u (xα,yα, z) + βv(yα,w)

> αu (x0,y0, z) + (1 − α)u (x1,y1, z)

+βv(yα,w)

> αu (x0,y0, z) + (1 − α)u (x1,y1, z)

+β [αv(y0,w) + (1 − α)v(y1,w)]

= αg(x0,y0, z,w) + (1 − α)g(x1,y1, z,w),

where the first inequality comes from the strict concavity of u and the second, from the concavity of v.

That is, g is strictly quasiconcave, which establishes that Υ(x, z) is single-valued. Therefore,

Qτ[g (xα,yα, z,w) |z] > Qτ [αg(x0,y0, z,w) + (1 − α)g(x1,y1, z,w)|z] .

Note that the variables X = g(x0,y0, z,w) and Y = g(x1,y1, z,w) satisfy the assumption of Proposition

7.4, since v is nondecreasing in w (holding z fixed). Therefore,

Qτ[g (xα,yα, z,w) |z] > αQτ [g(x0,y0, z,w)|z] + (1 − α)Qτ [g(x1,y1, z,w)|z]

= αMτ(v)(x0, z) + (1 − α)Mτ(v)(x1, z). (56)
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Therefore,

Mτ(v) (xα, z) > Qτ[g (xα,yα, z,w) |z]

> αMτ(v) (x0, z) + (1 − α)Mτ(v) (x1, z) ,

This establishes strict concavity, concluding the proof.

Lemma 7.9. Let assumption 2 hold. If h : Z→ R is weakly increasing and z 6 z ′, then Qτ[h(w)|z] 6

Qτ[h(w)|z
′].

Proof. From Assumption 2(ii), if h : Z→ R is weakly increasing and z 6 z ′:∫
Z

h(α)
[
−1{α∈Z:α6w}

]
f(α|z)dα 6

∫
Z

h(α)
[
−1{α∈Z:α6w}

]
f(α|z ′)dα.

Thus, ∫
{α∈Z:α6w}

h(α)f(α|z)dα >
∫
{α∈Z:α6w}

h(α)f(α|z ′)dα. (57)

If we define H(w|z) = Pr ([h(W) 6 h(w)] |Z = z), then (57) can be written as:

H(w|z) > H(w|z ′).

Observe that Qτ[h(w)|z] = inf{α ∈ R : H(α|z) > τ} and, whenever z 6 z ′, H(w|z ′) 6 H(w|z), for all

w. Therefore, if z 6 z ′, then

{α ∈ R : H(α|z) > τ} ⊃ {α ∈ R : H(α|z ′) > τ},

which implies that

Qτ[h(w)|z] = inf{α ∈ R : H(α|z) > τ} 6 inf{α ∈ R : H(α|z ′) > τ} = Qτ[h(w)|z
′],

as we wanted to show.

Lemma 7.10. Let assumption 2 hold. If v ∈ C is increasing in z then Mτ(v) is strictly increasing in z.

Proof. Let z1, z2 ∈ Z, with z1 < z2. For i = 1, 2, let yi ∈ Γ (x, zi) realize the maximum, that is,

Mτ(v) (xi, z) = u(x,yi, zi) + βQτ[v(yi,w)|zi].

Since u is strictly increasing in z, we have:

Mτ(v) (x, z1) = u(x,y1, z1) + βQτ[v(y1,w)|z1] < u(x,y1, z2) + βQτ[v(y1,w)|z1].

From Lemma 7.9, we have Qτ[v(y1,w)|z1] 6 Qτ[v(y1,w)|z2], which gives:

Mτ(v) (x, z1) < u(x,y1, z2) + βQτ[v(y1,w)|z2].
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From Assumption 2, Γ(x, z) ⊆ Γ(x, z ′), that is, y1 ∈ Γ(x, z2). Optimality thus implies that:

u(x,y1, z2) + βQτ[v(y1,w)|z2] 6 u(x,y2, z2) + βQτ[v(y2,w)|z2] = Mτ(v) (x, z2) .

Therefore, Mτ(v) (x, z1) <Mτ(v) (x, z2), which shows strict increasingness in z.

We conclude the proof of Theorem 3.10 by showing differentiability of v, which follows from an

easy adaptation of Benveniste and Scheinkman (1979)’s argument. For completeness and reader’s

convenience, we reproduce it here. Given (x, z), let y∗(x, z) ∈ Γ(x, z) be unique maximum as established

in Lemma 7.8. Thus, for all (x, z), we have:

v(x, z) = u(x,y∗(x, z), z) + βQτ[v(y
∗(x, z),w)|z].

Fix x0 in the interior of X and define:

w̄(x, z) = u(x,y∗(x0, z), z) + βQτ[v(y
∗(x0, z),w)|z].

From the optimality, for a neighborhood of x0, we have w̄(x, z) 6 v(x, z), with equality at x = x0, which

implies w̄(x, z) − w̄(x0, z) 6 v(x, z) − v(x0, z). Note that w̄ is concave and differentiable in x because u

is. Thus, any subgradient p of v at x0 must satisfy

p · (x− x0) > v(x, z) − v(x0, z) > w̄(x, z) − w̄(x0, z).

Thus, p is also a subgradient of w̄. But since w̄ is differentiable, p is unique. Therefore, v is a concave

function with a unique subgradient. Therefore, it is differentiable in x (cf. Rockafellar (1970, Theorem

25.1, p. 242)) and its derivative with respect to x is the same as that of w̄, that is,

∂vτ

∂xi
(x, z) =

∂w̄

∂xi
(x, z) =

∂u

∂xi
(x,y∗(x, z), z),

as we wanted to show.

Proof of Lemma 3.12: By Stokey, Lucas, and Prescott (1989, Theorem 7.6), Γ has a measurable

selection. Therefore, the argument in Stokey, Lucas, and Prescott (1989, Lemma 9.1) establishes the

result.

We need the following notation in the next proof. Let T ∈ N ∪ {∞} and S : ZT → ZT−1 be the

shift operator, that is, given z = (z1, z2, ..., zT ) ∈ ZT , S(z) = (z2, ..., zT ) ∈ ZT−1. Abusing notation, let

S : Π → Π also denote the shift operator for plans, that is, given π ∈ Π, πs = S(π) ∈ Π is defined as

follows: for each given z∞ ∈ Z∞, πst(x,S(z
t+1)) = πt+1(x, z

t+1). Let St : Π→ Π be the composition of

S with itself t times.

Proof of Lemma 3.13: Let t > 2 (otherwise there is nothing to prove). Since Πt(x, z) ⊂ Π1(x, z) =

Π(x, z) by definition, we have v∗t(x, z) 6 v1(x, z). Suppose, for an absurd, that there exists π ∈ Π(x, z)
such that

V1(π, x, z) > v∗t(x, z). (58)
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Let π̃ and (x̃, z̃t) be such that St−1(π̃) = π, xπ̃t (x̃, z̃
t) = x and z̃t = z. Then, Vt(z̃, x̃, z̃

t) = V1(π, x, z).

Since v∗t(x, z) > Vt(z̃, x̃, z̃
t), this establishes a contradiction with (58).

Proof of Lemma 3.14: If v is bounded and satisfies (23), then it is the unique fixed-point of the

contraction Mτ. Thus, the proof of Theorem 3.9 establishes, via the Maximum Theorem, the claims.

Proof of Theorem 3.15: Assume that v satisfies (23). It is sufficient to show that (i) v(x, z) >

V1(π, x, z) for any π ∈ Π(x, z) and (x, z) ∈ X × Z; and (ii) v(x, z) = V1(π
ψ, x, z). Let π ∈ Π(x, z). We

have:

v(x, z) = sup
y∈Γ(xπ1 ,z1)

u (xπ1 ,y, z1) + βQτ[v(y, z2)|z1]

> u (xπ1 , xπ2 , z1) + βQτ [v(x
π
2 , z2)|z1]

= u (xπ1 , xπ2 , z1) + βQτ

[
sup

y∈Γ(xπ2 ,z2)

{
u (xπ2 ,y, z2) + βQτ

[
v(y, z3)

∣∣∣z2]} ∣∣∣∣z1
]

> u (xπ1 , xπ2 , z1) + Qτ

[
βu (xπ2 , xπ3 , z2) + Qτ

[
β2v(xπ3 , z3)

∣∣∣z2] ∣∣∣∣z1] ,

where the two inequalities come from the definition of sup, and the equalities from (23) and Corollary

7.3. Repeating the same arguments, we obtain:

v(x, z) > u(xπ1 , xπ2 , z1) + Qτ

[
βu(xπ2 , xπ3 , z2) + Qτ

[
β2u(xπ3 , xπ4 , z3) + . . .

. . . + Qτ

[
βnu(xπn+1, xπn+2, zn) + β

n+1v(xπn,Zn)
]∣∣∣Zn = zn

]
. . .

∣∣∣∣Z1 = z

]
.

Repeating the arguments in the proof of Proposition 3.5, we can conclude that the limit of the right

hand size when n → ∞ is Vπ(x, z) = V1(π, x, z). Thus, we have established that v(x, z) > V1(π, x, z).

Since π was arbitrary, then v(x, z) > v∗(x, z). On the other hand, for πψ the inequalities above hold

with equality and we obtain v(x, z) = v∗(x, z).

Proof of Theorem 3.16: Let g(x,y, z,w) ≡ u(x,y, z)+βQτ[v
τ(y,w)|z] and y∗(x, z) be an interior

solution of the problem (23). Observe that vτ is increasing in w, differentiable in its first variable and

for 0 < x ′i − xi < ε, for some small ε > 0,

vτ(x ′i, x−i, z) − v
τ(xi, x−i, z) =

∫x′

x

∂vτ

∂xi
(α, x−i, z)dα =

∫x′

x

∂u

∂xi
(α, x−i, z)dα

is increasing in z because ∂u
∂xi

is. Therefore, the assumptions of Proposition 3.17 are satisfied and we

conclude that ∂Qτ
∂xi

[vτ(x, z)] = Qτ

[
∂vτ

∂xi
(x, z)

]
. Since u is differentiable in y, so is g. Since y∗(x, z) is

interior, the following first order condition holds:

∂g

∂yi
(x,y∗(x, z), z, Qτ[w|z]) =

∂u

∂yi
(x,y∗(x, z), z) + βQτ[

∂vτ

∂xi
(y∗(x, z),w)|z]) = 0.
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Now we apply Theorem 3.10 and its expression: ∂v
τ

∂xi
(x, z) = ∂u

∂xi
(x,y∗(x, z), z), to conclude that

∂u

∂yi
(x,y∗(x, z), z) + βQτ

[
∂u

∂xi
(y∗(x, z),y∗(y∗(x, z),w)),w)

∣∣∣∣z] = 0. (59)

Now, we have just to put the notation of a sequence. For this, let π = (xt) denote an optimal path

beginning at (x0, z0), (59) can be rewritten, substituting x for xπt , y∗(x, z) for xπt+1, y∗(y∗(x, z),w) for

xπt+2, z for zt and w for zt+1, as:

∂u

∂yi

(
xπt , xπt+1, zt

)
+ βQτ

[
∂u

∂xi

(
xπt+1, xπt+2, zt+1

)∣∣∣∣zt] = 0. (60)

which we wanted to establish.

Proof of Proposition 3.17: Fix x = (xi, x−i), with the usual meaning and δ > 0. Define X = h̃(z) =

h(xi + δ, x−i, z) − h(xi, x−i, z) and Y = g̃(z) = h(xi, x−i, z). Since h and d(z) ≡ h(xi + δ, x−i, z) −
h(xi, x−i, z) are increasing in z by assumption, the random variables X and Y satisfy the assumptions

of the previous proposition, which allows us to conclude that

Qτ[h(xi + δ, x−i, z)] = Qτ[X+ Y] = Qτ[X] + Qτ[Y]

= Qτ[h(xi + δ, x−i, z) − h(xi, x−i, z)] + Qτ[h(xi, x−i, z)].

Therefore,

Qτ[h(xi + δ, x−i, z)] − Qτ[h(xi, x−i, z)]

δ
= Qτ

[
h(xi + δ, x−i, z) − h(xi, x−i, z)]

δ

]
.

Taking the limit when δ→ 0 on both sides above, we obtain:

∂Qτ
∂xi

[h(x, z)] = Qτ

[
∂h

∂xi
(x, z)

]
,

as we wanted to show.

7.3 Proofs of Section 5

Proof of Lemma 5.1: Assumption 1 (i)−(iii) and (v) are immediate. Since Z and X are bounded, and

U and z 7→ z+p(z) are C1, u is C1 and bounded. Thus, Assumption 1 is satisfied. Similarly, Assumptions

2 are easily seen to be satisfied. It remains to verify the assumption of Theorem 3.16, namely that
∂u
∂xi

(
xπt , xπt+1, zt

)
is strictly increasing in zt, which happens if and only if log ∂u

∂xi

(
xπt , xπt+1, zt

)
is strictly

increasing in zt. Since

log
∂u

∂x
(x,y, z) = −γ log [z · x+ p(z) · (x− y)] + log (z+ p(z)) ,

and xπt = xπt+1 = 1, we need to verify only that −γ log [z · x] ′ + [log (z+ p(z))] ′ > 0. This is equivalent

to γ < z [log (z+ p(z))] ′, which is contained in Assumption 3(iv).
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