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Abstract

A principal sequentially delegates project adoption decisions to an agent,
who can assess project quality but has lower standards than the principal. In
equilibrium, the principal allows bad projects in the future to incentivize the
agent to be selective today. The optimal contract, termed Dynamic Capital
Budgeting, comprises two regimes. First, the principal provides an expense
account to fund projects and yields full discretion to the agent. The account
accrues interest until hitting a cap. While the account grows, the agent is
willingly selective. After enough projects, the second regime begins, and the
agent loses his autonomy forever.
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1 Introduction

Many economic activities are arranged via delegated decision making. In practice,
those with the necessary information to make a decision may differ—and, indeed,
have different interests—from those with the legal authority to act. Such relation-
ships are often ongoing, consisting of many distinct decisions to be made over time,
with the conflict of interest persisting throughout. A state government that funds
local infrastructure may be more selective than the local government equipped to
evaluate its potential benefits. A university bears the cost of a hired professor,
relying on the department to determine candidates’ quality. The Department of De-
fense funds specialized equipment for each of its units, but must rely on those on
the ground to assess their need for it. Our focus is on how such repeated delegation
should optimally be organized, and on how the relationship evolves over time.

Beyond the absence of monetary incentives, formal contingent contracting may
be difficult for two reasons. First, it may be impractical for the informed party
to produce verifiable evidence supporting its recommendations. Second, it might
be unrealistic for the controlling party to credibly cede authority in the long run.
Even so, the prospect of a future relationship may align the actors’ interests: both
parties may be flexible concerning their immediate goals, with a view to a healthy
relationship.

Even for decisions that are, in principle, separate—in which today’s course of
action has no bearing on tomorrow’s prospects—the controlling party can connect
them, as a means to discipline the informed party now. If the university restricts
the physics department to ten hires per decade, this might persuade the physics
department to be discerning in the present, as hiring a mediocre physicist would
crowd out a good one. By employing a budgeting rule, the controlling party imposes
a cost on the agent for excessive spending, better aligning their interests.

We study an infinitely repeated game between a principal (“she”) with full au-
thority over a decision to be made in an uncertain world; she relies on an agent
(“he”) to assess the state. Each period, the principal must choose whether or not
to initiate a project, which may be good (i.e. high enough value to offset its cost)
or bad. The principal herself is ignorant of the current project’s quality, but the
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agent knows it. The players have partially aligned preferences: both prefer a good
project to any other outcome, but they disagree on which projects are worth taking.
The principal wishes to fund only good projects, while the agent always prefers to
invest in any project. For instance, consider the ongoing relationship between local
and state governments. Each year, a county can request state government funds for
the construction of a park. The state, taking into account past funding decisions,
decides whether or not to fund it. The park would surely benefit the county, but
the state must weigh this benefit against the money’s opportunity cost. To assess
this trade-off, the state relies on the county’s local expertise. We focus on the case
in which the principal needs the agent: the ex-ante expected value of a project is
not enough to offset its cost. If the county were never selective in its proposals, the
state would never want to fund the park. The agent’s private information is tran-
sient: project types are independent across time, and a given project affects only
within-period payoffs.1

To delegate—to cede control at the ex-ante stage—entails some vulnerability. If
our principal wants to make use of the agent’s expertise, she must give him the lib-
erty to act. In funding a park, the state government risks wasting taxpayer money.
Acting on a county’s recommendation, the state won’t know whether the park is
truly valuable to the community, even after it is built. Furthermore, if the state
makes a policy of funding each and every park the county requests, then it risks
wasting a lot of money on many unneeded parks. This vulnerability limits the free-
dom that the agent can expect from the principal in the future. The state government
cannot credibly reward a county’s fiscal restraint today by promising carte blanche
in the future.

The present conflict of interest would be resolved if the principal could sell
permanent control to the agent.2 In keeping with our leading applications, we focus
on the repeated interaction without monetary transactions.3 The Department of

1That is, we abstract from the intrinsic dynamic consequences of adopting a project—e.g. affect-
ing the remaining pool of potential projects, or affecting the needs/preferences of the agent going
forward. In this sense, we isolate the dynamic delegation problem.

2This standard solution is sometimes called “selling the firm.” For instance, see p. 482 of Mas-
Colell, Whinston, and Green (1995).

3This assumption is stronger than needed. As long as the agent cannot make transfers to the
principal, our main results are qualitatively unchanged.
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Defense , for example, is unlikely to ask soldiers to pay for their own body armor.
Our first result, Theorem 1, is an efficiency bound on any delegation rule that

involves only good projects being taken. If no bad projects are initiated, the prin-
cipal and the agent have aligned interests, both preferring more projects. The best
such delegation rule, the Aligned Optimal Budget, has a very simple form. The
principal delegates to the agent until the agent adopts a project, but she follows any
project with a temporary freeze. That is, no more projects are allowed for the next ⌧̄
units of time. Then, the same contract starts over. The optimal ⌧̄ will be the shortest
freeze duration severe enough to keep the agent from taking bad projects. In the
context of a university, the physics department can freely search for a candidate,
but any hire is followed by a temporary hiring freeze. During the freeze, although
many qualified candidates may be available, the department is forbidden from hir-
ing them. We show that the resulting inefficiency remains even if the parties are
arbitrarily patient.

Our main result, Theorem 2, is a full characterization of the optimal intertempo-
ral delegation rule. The uniquely4 optimal contract, the Dynamic Capital Budget,
comprises two distinct regimes. At any time, the parties engage in either Capped
Budgeting or Controlled Budgeting.

In the Capped Budget regime, the principal always delegates, and the agent
initiates all good projects that arrive. At the relationship’s outset, the agent has an
expense account for projects, indexed by an initial balance and an account balance
cap. The balance captures the number of projects that the agent could adopt im-
mediately without consulting the principal. Any time the agent takes a project, his
balance declines by 1. While the agent has any funds in his account, the account
accrues interest. If the agent takes few enough projects, the account will grow to
its cap. At this balance, the agent is still allowed to take projects, but his account
doesn’t grow any larger (even if he waits). Not being rewarded for fiscal restraint,
the agent immediately initiates a project, and his balance again declines by 1.

If the agent overspends, a Controlled Budget regime begins: the principal first
imposes a temporary freeze to punish the agent: a larger overdraft is met with a

4More precisely, the two-regime structure and the exact character of the Capped Budget regime
are uniquely required by optimality.
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longer freeze. The parties then revert to the Aligned Optimal Budget. It is worth
noting that the players are certain to eventually enter this regime. Once there, the
Controlled Budget regime is absorbing.

With a Capped Budget, the principal tolerates some bad projects, and, in turn,
avoids freezes. For a well-chosen account balance, the efficiency gain (more search
time for good projects) outweighs the risk of bad projects.

There are two broader lessons to be learned from the above characterization.
First, the disadvantaged principal, stripped of all her usual tools, can nonetheless
leverage the agent’s information with some success. Second, the optimal equilib-
rium exhibits rich dynamics for such a simple, stationary model.

Prima facie, the only incentivizing instrument available to the principal is mu-
tual “money burning” in the form of (temporarily) freezing. For instance, a freeze
on equipment acquisition by the Department of Defense can be a useful threat, in-
ducing frugal decisions now, but it comes at a cost: its own soldiers will sometimes
be unequipped even in times of need. This force, with the cost it entails, single-
handedly disciplines the agent under Controlled Budgeting. However, the principal
has an additional tool: the expectation of future lenience can serve as a reward for
the agent today. To induce frugal decisions now, the Department of Defense may
promise more budgetary freedom in the future. The Capped Budget makes use of
both this reward and above punishment—carrot and stick. A high account balance
entails the promise of future permissiveness from the principal, while a low account
balance entails an imminent threat of Controlled Budgeting. When the budget is
below the cap, the principal rewards the agent for his diligence with the account’s
interest accrual. As long as the promise is credible—i.e. the principal would rather
fulfill her contract than unilaterally freeze the relationship—the reward will be cred-
ible too. At the cap itself, the principal cannot credibly promise further lenience,
and good behavior by the agent would go unpaid; accordingly, the agent takes a
project immediately. If the unit has shown enough fiscal restraint, the Department
of Defense purchases new equipment, independent of its need, to reward the unit.

The optimal contract yields clear dynamics for the delegation relationship. Both
regimes reflect a productive relationship, but each is of a distinct character. Capped
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Budgeting is highly productive but low-yield:5 every good project is adopted, but
some bad projects are as well. Controlled Budgeting is high-yield but less produc-
tive: only good projects are adopted, but some good opportunities go unrealized.
In this sense, as the Capped Budget regime is transient, the relationship naturally
drifts toward conservatism. The principal’s payoff comparisons among regimes
are ambiguous: at lower budget balances, Capped Budgeting dominates Controlled
Budgeting, while the relationship reverses for larger balances.

The remainder of the paper is structured as follows. In the following pages,
we discuss the related literature. Section 2 presents the model and introduces a
convenient language for discussing players’ incentives in our model. In Section 3,
we discuss aligned equilibria—i.e. those in which no bad projects are adopted; we
characterize the class and show that such equilibria are necessarily inefficient. The
heart of the paper is Section 4, in which we present the Dynamic Capital Budget
contract and prove its optimality. In Section 5, we discuss some possible extensions
of our model. Final remarks follow in Section 6.

Related Literature

This paper belongs to a rich literature on delegated decision making,6 initiated
by Holmström (1984), wherein a principal faces a tradeoff between leveraging an
agent’s private information and shielding herself from his conflicting interests. The
key issue is how much freedom the principal should give the agent; the more aligned
their preferences are, the more discretion she should allow. Armstrong and Vickers
(2010) find that the principal optimally excludes some ex-post favorable options in
order to provide better incentives to the agent ex-ante, while Ambrus and Egorov
(2013) highlight the value created by money burning as a means to alleviate in-
centive constraints. These insights apply to our model, in which indirect money
burning—harmful to both players—is used to provide incentives.

Our paper contributes to the recently active field of dynamic delegation. Malenko
(2013) characterizes the optimal contract for a principal who delegates investment

5By “productive,” we mean that a lot of value is delivered to the agent. By “low-yield,” we mean
that less such value is delivered per unit of cost to the principal.

6For instance, see Frankel (2014) and the thorough review therein.
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choices and has a costly state verification technology, monetary transfers, and com-
mitment power: a capital expense account with a fluctuating interest rate. Guo
(2014) focuses on the delegation of a dynamic decision problem to an agent with
non-transient private information. Alonso and Matouschek (2007) indicate how dy-
namic threats can partially bridge the gap between the cheap-talk and delegation
models. In contemporaneous work, Guo and Hörner (2014) study optimal dynamic
mechanisms without money in a world of partially persistent valuations, in which
the principal has commitment power. The principal’s ability to commit generates
different incentive dynamics: in contrast to our model, the agent may receive his
first-best outcome in the long run.

Our model speaks to the relational contracting literature, as in Pearce and Stac-
chetti (1998), Levin (2003), and Malcomson (2010). This literature focuses on
relationships in which formal contracting is impossible, and all incentives—and the
credibility of promises that provide those incentives—are anchored to the future
value of the relationship. In particular, Li and Matouschek (2013) focus on the case
in which the principal’s opportunity cost of promise keeping is private information.
In both their model and ours, the inability to formally contract leads a stationary
problem to be met with a non-stationary relationship. In theirs, the relationship is
cyclical, with every punishment being strictly temporary. In ours, the relationship
temporarily cycles, before drifting toward conservatism.

Our results add to the literature on relationship building under private informa-
tion. One strand of the literature concerns itself with the building and maintenance
of partnerships, such as Möbius (2001), Hauser and Hopenhayn (2008), and Es-
pino, Kozlowski, and Sanchez (2013). Möbius (2001) constructs a model in which
players privately observe opportunities to do favors for one another at personal cost;
Hauser and Hopenhayn (2008) indicate that the relationship can benefit from vary-
ing incentives based on both action and inaction. In a related strand of the literature,
Chassang (2010) and Li, Matouschek, and Powell (2015) focus on the relationship
between a firm and its employee, whose private information can generate persis-
tent differences in performance across ex-ante identical firms. In contemporane-
ous work, Li, Matouschek, and Powell (2015) focus on a repeated trust game—the
principal either takes a safe option or trusts the biased, but better-informed, agent—
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preceded at every stage by a simultaneous entry decision. If either player chooses
not to enter the game, both are uniformly punished. The opportunity to unilater-
ally punish the principal makes long-term reward for the agent credible, generating
history dependence similar to that in Guo and Hörner (2014): owing to the firm’s in-
ability to interpret its employee’s actions, the realization of random early outcomes
has long-lasting consequences. A final strand of this literature regards dynamic cor-
porate finance, as in Clementi and Hopenhayn (2006) or Biais et al. (2010). In Biais
et al. (2010), the principal commits to investment choices and monetary transfers to
the agent, who privately acts to reduce the chance of large losses for the firm. While
our setting is considerably different, their optimal contract and ours exhibit similar
dynamics: our “funny money” balance takes the role of real sunk investment.

Lastly, there is a deep connection between the present work and the literature
on linked decisions. Casella (2005) and Jackson and Sonnenschein (2007) consider
a setting in which, given a large number of physically independent decisions, the
ability to connect them across time helps align incentives. Frankel (2011, 2013)
considers environments in which a principal with commitment power optimally
employs a budgeting rule to discipline the agent. Linking decisions across time, as
in the above literature, is always possible if the principal can commit to a budgetary
rule. In our model—without such commitment power—dynamic budgeting remains
optimal but is tempered by the principal’s need for credibility.

2 The Model

We consider an infinite-horizon two-player (Principal andAgent) game in discrete
time. Each period, the principal chooses whether or not to delegate a project adop-
tion choice to the agent. Conditional on delegation, the agent privately observes
which type of project is available and then publicly decides whether or not to adopt
it. At the time of its adoption, a project of type ✓ generates an agent payoff of ✓.
Each project entails an implementation cost of c, to be borne solely by the principal;
thus, a project yields a net utility of ✓ � c to the principal. Notice that the cost is
independent of the project’s type. In particular, the difference between the agent’s
payoffs and the principal’s payoffs doesn’t depend on the agent’s private informa-

8



tion. We interpret this payoff structure as the principal innately caring about the
agent’s (unobservable) payoff, in addition to the cost that she alone bears. While
the university’s president cannot expertly assess a specialized candidate, she still
wants the physics department to hire good physicists. The state government can’t
assess the added value of each local public project, but it still values the benefit that
a project brings to the community. Given this altruistic motive, the principal cares
about the value generated by a project, even though she never observes it.

While the players rank projects in the same way, the key tension in our model
is a disagreement over which projects are worth taking. The agent cares only about
the benefit generated by a project, while the principal cares about said benefit net of
cost; we find revenue and profit to be useful interpretations of the players’ payoffs.
P and A share a common discount factor � 2 (0, 1), maximizing expected dis-

counted profit and expected discounted revenue, respectively. So, if the available
project in each period t 2 Z+ is ✓t and projects are adopted in periods T ✓ Z+, then
the principal and agent get profit and revenue,

⇧ =
X

t2T
�t(✓t � c) and V =

X

t2T
�t✓t, respectively. (1)

First, P publicly decides whether to freeze project adoption or to delegate it. If
P freezes, nothing happens and both players accrue no payoffs. If P delegates, A
privately observes which type of project is available and decides whether or not to
initiate the available project. The current period’s project is good (i.e. of type ✓̄)
with probability h 2 (0, 1) and bad (i.e. of type ✓) with complementary probability.
If the agent initiates a project of type ✓, payoffs (✓ � c, ✓) accrue to the players. The
principal observes whether or not the agent initiated a project, but she never sees
the project’s type.

Notation. Let ✓E := (1 � h)✓ + h✓̄ be the ex-ante expected project value.

Throughout the paper, we maintain the following assumption:

Assumption 1.
0 < ✓ < ✓E < c < ✓̄.
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Each period, P andA play the following stage game:

freeze

project

no

bad (1 � h)

no
pro ject

good (h)

delegate

Principal

Nature

Agent Agent

(0, 0)

(0, 0)(0, 0)

(✓ � c, ✓) (✓̄ � c, ✓̄)

Figure 1: The principal observes the agent’s choices but not project quality.

Assumption 1 characterizes the preference misalignment between agent and
principal. Since ✓ � c < 0 < ✓̄ � c, the principal prefers good projects to noth-
ing, but prefers inactivity to bad projects. Given 0 < ✓ < ✓̄, the agent prefers any
project to no project, but also prefers good ones to bad ones. So, they agree on
which projects are better to adopt, but may disagree on whether a given project is
worth taking ex-post. The condition ✓E < c (interpreted as an assumption that good
projects are scarce) says that the latter effect dominates, and the conflict of interest
prevails even ex-ante: the principal prefers a freeze to the average project. A good
enough physicist is rare; the university finds hiring worthwhile only if it can rely
on the department to separate the wheat from the chaff. If the players interacted
only once, the department would not be selective. Accordingly, the stage game has
a unique sequential equilbrium: the principal freezes, and the agent takes a project
if allowed.
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Equilibrium Values

Throughout the paper, equilibrium will be taken to mean perfect semi-public equi-
librium (PPE), in which the players respond only to the public history of actions
and (for the agent) current project availability. While in a different setting, this def-
inition in similar in spirit to that in Compte (1998) and in Harrington and Skrzypacz
(2011).

Definition 1. Each period, one of three public outcomes occurs: the principal

freezes; the principal delegates and the agent initiates no project; or the principal

delegates and the agent initiates a project. A time-t public history, ht, is a sequence

of t public outcomes (along with realizations of public signals). The agent has more

relevant information when making a decision. A time-t agent semi-public history

is hAt = (ht,D, ✓t), where ht is a public history, D is a principal decision to delegate,

and ✓t is a current project type.

A principal public strategy specifies, for each public history, an action: dele-

gate or freeze. An agent semi-public strategy specifies, for each agent semi-public

history, an action: project adoption or no project adoption.

A perfect (semi-)public equilibrium (PPE) is a sequential equilibrium in which

the principal plays a public strategy, while the agent plays a semi-public strategy.

Every equilibrium entails an expected discounted number of adopted good projects
g = E

P

t2T �
t1{✓t=✓̄} and an expected discounted number of adopted bad projects

b = E
P

t2T �
t1{✓t=✓}, where T ✓ Z+ is the realized set of periods in which the prin-

cipal delegates and the agent adopts a project. Given those, one can compute the
agent value/revenue as

v = ✓̄g + ✓b

and the principal value/profit as

⇡ = (✓̄ � c)g � (c � ✓)b.

For ease of bookkeeping, it is convenient to track equilibrium-supported revenue
v and bad projects b, both in expected discounted terms. The vector (v, b) encodes
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both agent value v and principal profit

⇡(v, b) = (✓̄ � c)g � (c � ✓)b

= (✓̄ � c)
v � ✓b
✓̄
� (c � ✓)b

=
✓

1 � c
✓̄

◆

v � c
 

1 � ✓
✓̄

!

b.

Toward a Characterization The main objective of this paper is to characterize
the set of equilibrium-supported payoffs,

E⇤ := {(v, b) : 9 equilibrium with revenue v and bad projects b} ✓ R2
+.

Throughout the paper, we make extensive use of two simple observations about
the set E⇤. First, notice that (0, 0) 2 E⇤, since the profile �static, in which the prin-
cipal always freezes and the agent takes every permitted project, is an equilibrium.
Said differently, there is always an unproductive equilibrium—i.e. one with no
projects. That this equilibrium provides min-max payoffs makes our characteriza-
tion easier. Second, as the following lemma clarifies, off-path strategy specification
is unnecessary in our model. For any profile satisfying appropriate on-path incen-
tive constraints, one can always find another profile with identical on-path behavior,
but altered off-path to make the profile an equilibrium. With the lemma in hand, we
rarely specify off-path behavior in a given strategy profile, as we are chiefly inter-
ested in payoffs.

Lemma 1. Fix a strategy profile �, and suppose that:

1. The agent has no profitable deviation from any on-path history.

2. Following all on-path histories, the principal has nonnegative continuation

profit.

Then, there is an equilibrium �̃ that generates the same on-path behavior (and,

therefore, the same value profile).
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Proof. Let �static be the stage Nash profile—i.e. the principal always freezes, and
the agent takes a project immediately whenever permitted.
Define �̃ as follows.

• On-path (i.e. if P has never deviated from �’s prescription), play according
to �.

• Off-path (i.e. if P has ever deviated from �’s prescription), play according to
�static.

The new profile is incentive-compatible for the agent: off-path because �static is, on-
path because � is. It is also incentive-compatible for the principal: off-path because
�static is, on-path because � is and has nonnegative continuation profits while �static

yields zero profit. ⇤

Dynamic Incentives

While our results concern a discrete-time repeated game, we find it expositionally
convenient to present the intuition in continuous time. We present results for the
case in which the players interact very frequently, but good projects remain scarce.
A unit can find desirable equipment to request from the Department of Defense at
any time; what is rare is the opportunity to buy equipment whose benefit offsets its
cost. The cleanest economic intuition lies in this limiting case. Letting the time
between decisions, together with the proportion of good projects, vanish enables us
to present our main results heuristically in the language of calculus.

Given a period length � > 0, we follow a standard parametrization: discount
factor � = 1 � r�, and proportion of good projects h = ⌘� for fixed r, ⌘ > 0. In
the limit, as � ! 0, good projects arrive with Poisson rate ⌘, and bad projects are
always available. Rather than yielding flow payoffs, an initiated project of type ✓
provides the players a lump-sum revenue of ✓, at a lump-sum cost7 (to the prin-

7The analysis would not be changed if the benefit had a flow component but the cost were lump-
sum, in which case ✓ would be interpreted as a present discounted value. If the cost were not lump-
sum, on the other hand, the principal would face a new incentive constraint—to willingly continue
to fund a costly project.
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cipal) of c. A park funded by the state government, for instance, serves the local
community but at a sizable construction cost to the state.

Throughout the analysis, we normalize r = 1 and interpret ⌘ as the ratio ⌘r , the
good project arrival rate per effective unit of time. While we focus on the limit as
� ! 0 and thus � ! 1, the present work is not a folk theorem analysis.8 Finally,
observe that in the limiting case ✓E = ✓.

Self-Generation If we aim to understand the players’ incentives at any given mo-
ment, we must first understand how their future payoffs evolve in response to their
current choices. To describe the law of motion of revenue v [or, respectively, bad
projects b], we keep track of:

• v̇t [resp. ḃt], the rate of change of v [resp. b] conditional on no project adop-
tion; and

• ṽt [resp. b̃t], the continuation of v [resp. b] if a project is undertaken.

Observe that the continuation values cannot depend on the quality of the adopted
project (nor can the laws of motion depend on availability of forgone projects),
which is not publicly observable. Finally, describe the players’ present actions as
follows:

• The principal makes a delegation choice9 d 2 {0, 1},—i.e. whether or not to
let the agent execute a project in the current period.

• The agent chooses ⌘̂ 2 [0, ⌘] and �̂ 2 [0,1], the instantaneous rates at which
he currently initiates good and bad projects, respectively, conditional on being
allowed to.

8A folk theorem analysis would entail taking r ! 0 for a fixed arrival rate of good projects, and
thus taking their ratio ⌘ ! 1. The distinction is analogous to that in Abreu, Milgrom, and Pearce
(1991).

9As we show in the appendix, it is without loss of generality that the principal uses a pure
strategy. The intuition is that, since everything P does is publicly observed, any mixing she does
may as well be replaced with public mixing.
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By way of interpretation, dt, ⌘̂t, �̂t are the approximate choices on either [t, t + �)
for small � > 0 or until the next project, whichever comes first.10 In particular,
dt = 1 doesn’t mean that the agent has the opportunity to initiate an arbitrarily large
number of bad projects without the principal’s continued consent.

Appealing to self-generation arguments, as in Abreu, Pearce, and Stacchetti
(1990), and to Lemma 1, equilibrium is characterized by the following three condi-
tions:

1. Promise keeping:11

v = d
h

(⌘̂✓̄ + �̂✓) � (⌘̂ + �̂)(v � ṽ)
i

+ v̇

= d⌘̂(✓̄ + ṽ � v) + d�̂(✓ + ṽ � v) + v̇

b = d
h

�̂ � (⌘̂ + �̂)(b � b̃)
i

+ ḃ

= d⌘̂(0 + b̃ � b) + d�̂(1 + b̃ � b) + ḃ.

We decompose continuation outcomes (v, b) from any instant into what hap-
pens in each of three events—the agent finds and invests in a good project
at that instant; the agent finds and invests in a bad project at that instant; no
project is adopted—weighted by their instantaneous probabilities.

2. Agent incentive compatibility:

v � ṽ

8

>

>

>

<

>

>

>

:

� ✓ if �̂ < 1
 ✓̄ if ⌘̂ > 0.

If the agent is willing to resist taking a project immediately (�̂ < 1), it must
10Notice that, if the principal chooses dt = 1 and the agent chooses �̂t = 1, then both players face

new choices to make, still exactly at time t.
11When d = 1 and �̂ = 1, we replace the given equations with the limiting equations obtained

from dividing through by �̂:

0 = ✓ � (v � ṽ)
0 = 1 � (b � b̃).

When d = 0 and �̂ = 1, we let d�̂ = 0, so that the principal retains ultimate authority over project
adoption.
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be that the punishment v � ṽ for taking a project is severe enough to deter the
✓ myopic gain; similarly, if the agent is to take some good projects (⌘̂ > 0),
the same punishment v � ṽ cannot be too draconian.

3. Principal participation:
⇡(v, b) � 0.

The principal could, at any moment, unilaterally move to a permanent freeze
and secure herself a profit of zero. Therefore, at any history, she must be
securing at least that much in equilibrium.

3 Aligned Equilibrium

We have established that our game has no productive stationary equilibrium. If the
principal allows history-independent project adoption, the agent cannot be stopped
from taking limitless bad projects. In the present section, we ask whether this core
tension can be resolved by allowing non-stationary equilibria. More precisely, are
there productive aligned equilibria?

Definition. An aligned equilibrium is an equilibrium in which no bad projects are

ever adopted.

A sensible first attempt is to delegate, but to punish the agent as much as possible
as soon as he might have taken a bad project. Describe �1 as follows: the principal
allows exactly one project, after which she shuts down forever; the agent takes the
first good project that comes along. Is �1 an equilibrium? For this profile, before
the first project,

d = 1, ⌘̂ = ⌘, �̂ = 0, ṽ = 0, and v̇ = 0.

Therefore, promise keeping gives

v = ⌘(✓̄ + 0 � v) + 0 =) v =
⌘

1 + ⌘
✓̄ 2 (0, ✓̄).

Principal participation is immediate when there are no bad projects, so that we only
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need to check agent incentive compatibility, which holds if and only if

v � ṽ � ✓ () ⌘

1 + ⌘
✓̄ � ✓ () ⌘(✓̄ � ✓) � ✓.

Notation. Let ! := ⌘(✓̄ � ✓) be the marginal value of search.

The constant ! captures the marginal option value of searching for a good project
until the next instant.

Assumption 2.
! > ✓.

Unless otherwise stated, we will assume that Assumption 2 holds throughout. In
discrete time, Assumption 2 can equivalently be expressed as a lower bound on the
discount factor �. If the agent is sufficiently patient, the marginal value of searching
for a good project outweighs the myopic benefit of an immediate bad project.

A Stick with No Carrot

The argument above demonstrates that the threat of shutdown is enough to incen-
tivize picky project adoption. However, permanent shutdown destroys a lot of value,
for both the principal and the agent. If the university allows the physics department
only one hire for its entire existence, every good candidate is passed over thereafter,
harming the university. It is natural to ask whether a less severe mutual punishment
can provide the same incentives.

Given ⌧ 2 (0,1], describe the ⌧-freeze stationary contract �⌧ as follows:

1. The principal starts by delegating, and does so indefinitely if no projects are
taken.

2. The agent takes no bad projects, and takes the first good project that arrives.

3. Any project is followed by a freeze of length ⌧, followed by restarting �⌧.
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We can interpret the ⌧-freeze contract as a simple budget rule. The agent is
given a budget of one project by the principal. If A does not spend his budget,
it rolls over to the next instant. If the budget is depleted, P replenishes it after a
waiting period ⌧. The physics department can take as much time as needed to find
a suitable candidate, but the hire is followed by a two-year freeze; afterward, the
university allows the department to search again.

As seen in the previous section, �1 is an equilibrium. By continuity, �⌧ is
an equilibrium for sufficiently high finite ⌧. Moreover, for ⌧ ⇡ 0, the contract �⌧

cannot be an equilibrium. Indeed, in a delegation phase,

v � ṽ = (1 � e�⌧)v  (1 � e�⌧)⌘✓̄
⌧!0���! 0.

In particular, the punishment for executing a project, v�ṽ, is smaller than the benefit
of an immediate project, ✓, for sufficiently small ⌧. Hence, the agent strictly prefers
to take the (bad) project in front of him.

The revenue generated by �⌧ is decreasing in ⌧: less shutdown means fewer
forgone opportunities for good projects, which means more revenue. What is less
clear is how the punishment v � ṽ changes with ⌧. As we increase ⌧, the punish-
ment is v � ṽ = (1 � e�⌧)v, which increases as a fraction of total revenue. Thus, its
comparative statics are not obvious, as increasing ⌧ makes the punishment a bigger
share of a smaller pie. Let’s compute it: promise keeping gives v = ⌘[✓̄+ ṽ�v]+0 =
⌘[✓̄ � (1 � e�⌧)v], which implies

v =
⌘

1 + ⌘(1 � e�⌧)
✓̄ and v � ṽ =

⌘(1 � e�⌧)
1 + ⌘(1 � e�⌧)

✓̄.

With the revenue decreasing in ⌧ and the punishment increasing in ⌧, the following
proposition follows readily.

Proposition 1. Consider {�⌧}⌧2(0,1] as above.

1. There is a unique ⌧̄ 2 (0,1] satisfying
⌘(1 � e�⌧̄)

1 + ⌘(1 � e�⌧̄)
✓̄ = ✓.

2. �⌧ is an equilibrium if and only if ⌧ � ⌧̄.
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3. Among all such ⌧, the choice ⌧̄ provides the highest revenue (and, thus, the

highest profit).

4. The revenue of �⌧̄ is !, and so its profit is (1 � c
✓̄
)!.

Proof. Everything is proven above, except for the expression for ⌧̄ and the gener-
ated revenue. To compute ⌧̄,

⌘(1 � e�⌧)
1 + ⌘(1 � e�⌧)

✓̄ = ✓ () ⌘(1 � e�⌧)✓̄ = [1 + ⌘(1 � e�⌧)]✓

() (1 � e�⌧)! = ✓

() ⌧ = log
!

! � ✓ .

The associated revenue is then

v =
⌘

1 + ⌘(1 � e�⌧̄)
✓̄

=
⌘✓̄

1 + ⌘ ✓!
=
⌘✓̄

! + ⌘✓
!

= !.

⇤

This simple class of contracts illuminates the forces at play in our model. The
principal wants good projects to be initiated, but she cannot afford to give the agent
free rein. If she wants to stop him from investing in bad projects, she must threaten
him with mutual money burning. Subject to wielding a large enough stick to en-
courage good behavior, she efficiently wastes as little opportunity as possible. The
university does not want to deprive the physics department of needed faculty, and
so it should limit them only enough to discipline fiscal restraint.

One may be concerned that frequent shutdown leaves a lot of opportunities un-
realized. Accordingly, it seems sensible to seek other plausible aligned equilibria
in which less value is destroyed.
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A Smaller Stick
What if, instead of allowing one project followed by temporary freeze, P allows
K 2 N projects, before freezing for ⌧ 2 (0,1]? The main lesson in Jackson and
Sonnenschein (2007) is that budgetary rationing of multiple decisions can alleviate
incentive misalignment, at a minor welfare cost. One might, therefore, hope that
allowing K projects before punishing enables a more productive relationship, while
still incentivizing the agent to avoid bad projects. As it turns out, this affords no
real improvement. If the (now more distant) punishment for the first project is
to be enough to stop the agent from cheating initially, it must be severe enough
to negate the would-be benefits of delayed closure. With computations similar to
those in the previous section, it is straightforward that: the “K-project, ⌧-freeze”
strategy profile is an equilibrium if and only if it delivers an initial value  ! to
the agent. So the principal can allow more projects before punishing the agent (and
herself), but if she is to still deter the agent from cheating, she has to make the
punishment phase—which happens farther in the future—longer for bigger K. This
makes higher K redundant: no such equilibrium can outperform the “1-project, ⌧̄-
freeze” equilibrium.

Aligned Optimality

The preceding analysis suggests a fundamental limit to how productive an aligned
equilibrium can be. Indeed, with no bad projects, the principal has only one dimension—
expected discounted good projects or, equivalently, E

R

e�t⌘1{open at time t} dt—with
which to provide incentives. Delaying a punishment, making it less likely, or mak-
ing it less severe are all different physical instruments to alleviate the same money-
burning cost, but with the same adverse effect on agent incentives. The following
theorem shows that the upper bound that we have uncovered in specific classes of
equilibria—the marginal value of search—is no coincidence.

Theorem 1 (Aligned Optimality). 12

1. There exist productive aligned equilibria if and only if13 Assumption 2 holds.
12The discrete time counterpart is Theorem 1, in the appendix.
13We abstract from the knife-edge case ! = ✓.
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2. Every aligned equilibrium generates revenue less than or equal to the marginal

value of search, !.

3. The ⌧̄-freeze contract, where ⌧̄ = log
!

! � ✓ , is, therefore, optimal among all

aligned equilibria, given Assumption 2.

Proof. Following any history, in any aligned equilibrium,

v̇ = v � p
h

(⌘̂✓̄ + �̂✓) � (⌘̂ + �̂)(v � ṽ)
i

= v � p
h

(⌘̂✓̄ + 0✓) � (⌘̂ + 0)(v � ṽ)
i

= v � p⌘̂[✓̄ � (v � ṽ)]

� v � p⌘̂[✓̄ � ✓] (since agent IC & no bad projects =) v � ṽ � ✓ if p > 0)

� v � ⌘(✓̄ � ✓)
= v � !.

So, if ✏ := v0 � ! > 0, then v grows indefinitely at rate v̇ � v � ! � v0 � ! = ✏, so
that vt � v0 + t✏. This would contradict the fact that (vt, bt) 2 Ē (a compact set) for
every history. Thus, it must be that v0  !, verifying (2).

For (1), suppose that Assumption 2 is violated. Consider any productive equilib-
rium �. Dropping to an on-path history if necessary, we may assume that � doesn’t
start with a freeze. If �̂0 > 0, then � isn’t an aligned equilibrium. If �̂0 < 1, then
agent IC implies v0 � ṽ0 � ✓. Therefore,

v0 � v0 � ṽ0 � ✓ > !.

Appealing to the first part, it must be that � is not an aligned equilibrium.
Under Assumption 2, �⌧̄ is an equilibrium providing revenue !, proving (3) and

the remaining direction of (1). ⇤

The second result above gives a firm upper bound on how much value can be
created in an aligned equilibrium. If the principal wants the agent to behave, she
has to stop him from taking bad projects. In an aligned equilibrium—in which the
principal’s payoffs are directly proportional to the agent’s—anything that punishes
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the agent punishes the principal just as much. Since the rolling budget rule �⌧̄

entails as little punishment as possible subject to agent IC whenever the principal is
delegating, it is best for both players within the class of aligned equilibria. In what
follows, we refer to �⌧̄ as our Aligned Optimal Budget.

One important consequence of the above is that aligned equilibria cannot hope
to achieve first-best for the principal, even as the players become very patient.14

Corollary 1. The ratio of aligned optimal profit to first-best profit is

!(1 � c
✓̄
)

⌘(✓̄ � c)
=
✓̄ � ✓
✓̄
< 1,

which is independent of players’ patience.

Expiring Budget: Beyond Aligned Equilibria

We now consider an intuitive class of contracts, showcasing a new incentivizing tool
available to the principal. In aligned equilibria, punishment via mutually costly
shutdown bears the full cost of providing incentives. In addition to such punish-
ment, the principal has a means to reward the agent: a project—no questions asked.
The principal can delegate to the agent t periods in the future, conditioning no other
decisions on the agent’s choice. In doing so, she gifts e�t✓E to the agent, at a per-
sonal cost of e�t(c� ✓E). As multiple such projects can be awarded at various times,
this mechanism amounts to transferable utility. Perhaps, by allowing bad projects
in case the agent has enough bad luck, the principal can benefit from burning less
value following good luck.

Consider the Expiring Budget contract, in which A is allowed to adopt one
project per calendar year—use it or lose it. P delegates until A takes a project, at
which point P freezes until the end of the year. If the agent doesn’t use his one-
project budget during that year, it expires. Each fiscal year, A takes the first good
project that arrives but resorts to a bad one if, by the end of the year, no good project
has arrived.

14As discussed in Footnote 8, we can understand the patient limit as ⌘! 1
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Under Assumption 2, one can verify that the the agent optimally exerts restraint
during the year; and at the last instant of a fiscal year, facing no opportunity cost,
the agent spends his imminently expiring budget. The presence of bad projects
introduces a new concern for equilibrium: P’s credibility. As the end of the year
approaches, if the agent has not yet used his annual budget, the likelihood of any
good project arriving this year vanishes. Equilibrium requires that, when called to
deliver an immediate (likely bad) project at year’s end, the principal would rather
do so than sever the relationship.

While it may be profit-enhancing to reward the agent with bad projects follow-
ing fiscal restraint,15 equilibrium requires that the promise of such bad projects be
credible.

4 Dynamic Capital Budgeting

In the previous section, we presented some sensible budget rules. First, in aligned
equilibria, the agent is punished via mutual money burning for each project but
cannot be rewarded for fiscal restraint. Next, in Expiring Budget contracts, the
agent is both punished (shutdown) for taking a project and rewarded (a project,
no questions asked) for waiting. The form of this reward, however, is inefficient.
Conditional on reaching the first fiscal year’s end with no good project, the agent
is certain to adopt a bad one. What if, instead of forcing an unused project to
expire, the principal adds it to next year’s budget? As we learned in the “A Smaller
Stick” subsection, an agent with a larger budget is less diligent because the search
opportunity cost of a project is smaller. An impatient agent would still initiate one
project immediately, leaving a budget of one project for the second year; nothing
changes relative to the Expiring Budget rule. A more patient agent, however, would
save his “stock” of projects for the future and, in doing so, make both players better
off. The agent spends the second year searching for up to two good projects, and
only at year’s end (if his bad luck continues) liquidates his budget. For this modified
budget to be an equilibrium, the principal’s promise must remain credible, even if

15We show in the appendix that, for some parameter values, an Expiring Budget outperforms any
aligned equilibrium.
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the agent’s search is unsuccessful. At the end of the second year, the principal must
prefer to finance two immediate projects (again, most likely bad) rather than sever
the relationship.

There are efficiency gains to be had from smoothing the agent’s budget across
time, but one must carefully balance the principal’s credibility constraint for it to
remain an equilibrium. Our next rule, the Dynamic Capital Budgeting (DCB)
contract, is an attempt to achieve this balance.

The DCB contract is characterized by a budget cap x̄ � 0 and initial budget
balance x 2 [�1, x̄], and consists of two regimes. At any time, players follow
Controlled Budgeting or Capped Budgeting, depending on the agent’s balance, x.
The account balance can be understood as the number of projects the agent can
initiate without immediately affecting the principal’s delegation decisions.

Capped Budget (x > 0)
The account balance grows at the interest rate r = 1 as long as x < x̄. Accrued
interest is used to reward the agent for fiscal restraint. Since the search opportunity
cost of taking a project decreases in the account balance, the reward for diligence
is increasing (exponentially) to maintain incentives. While A’s account is in the
black, P fully delegates project choice to A. However, every project that A ini-
tiates reduces the account balance to x � 1 (whether or not the latter is positive).
Good projects being scarce, there are limits to how many projects the principal can
credibly promise. When the balance is at the cap, the account can grow no further;
accordingly, the agent takes a project immediately, yielding a balance of x̄ � 1.

Controlled Budget (x  0)
The controlled budget regime is tailored to provide low revenue, low enough to be
feasibly provided in aligned equilibrium. When x < 0, the agent is over budget, and
the principal punishes the agent—more severely the further over budget the agent
is— with a freeze, restoring the balance to zero. The continuation contract when
the balance is x = 0 is our Aligned Optimal Budget.

Definition. The Dynamic Capital Budgeting (DCB) contract �x,x̄ is as follows:
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1. The Capped Budget regime: x > 0.

• While x 2 (0, x̄): P delegates, and A takes any available good projects

and no bad ones. If A initiates a project, the balance jumps from x to

x � 1; ifA doesn’t take a project, x drifts according to ẋ = rx = x > 0.

• When x hits x̄: P delegates, and A takes a project immediately. If A
picks up a project, the balance jumps from x̄ to x̄ � 1; ifA doesn’t take

a project, the balance remains at x̄.

2. The Controlled Budget regime: x  0.

• If x 2 [�1, 0]: P freezes for duration log !
!�✓|x| . The Aligned Optimal

Budget �⌧̄ is played thereafter.

At the physics department’s inception, the university allocates a budget of three
hires, with a cap of ten. Over time, the physics department searches for candidates.
Every time the department finds an appropriate candidate, it hires—and the provost
rubber stamps it—spending from the agreed-upon budget. Figure 2 represents one
possible realized path of the account balance over time.

The department finds two suitable candidates to hire in its first year; some inter-
est having accrued, the department budget is now at two hires. After the first year,
the department enters a dry spell: finding no suitable candidate for six years, the
department hires no one. Due to accrued interest, the account budget has increased
dramatically from two to over eight hires; furthermore, the increase is exponential.
In its ninth year, the account hits the cap and can grow no further. The department
can immediately hire up to nine physicists and continue to search (with its remain-
ing budget) or it can hire ten candidates and enact a regime change by the provost.
The department chooses to hire one physics professor (irrespective of quality) im-
mediately, and continue to search with a balance of nine.

Over the next few years, the department is flush and hires many professors.
First, for three years, the department hits its cap several times, hiring many mediocre
candidates. After its eleventh year, the department faces a lucky streak, finding
many great physicists over the following years, bringing the budget to one hire. In
the next twelve years, the department finds few candidates worth hiring. However,
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the interest accrual is so slow that the physics department still depletes its budget,
in the twenty-eighth year. Throughout this initial phase, the department hires a total
of twenty-four physics professors (much more than the account cap of ten).

At this point, the relationship changes permanently. After a temporary hiring
freeze, the provost allows the department to resume its search, but follows any hire
with a two-year hiring freeze. The relationship is now of a much more conservative
character.

Figure 2: One realization of the balance’s path under Controlled Budgeting (with x̄ = 10). Bad
projects are clustered, and the account eventually runs dry.

Notice that bad projects are clustered: immediately after a bad project, the high
balance of x̄�1 means that the next project is likely bad. Given exponential growth,
this effect is stronger the higher is the cap. In the Capped Budget regime, for a given
account cap, the balance has non-monotonic profit implications. If the account
runs low, there is an increased risk of imminently moving towards the low-revenue
Controlled Budget regime. If the account runs high, the principal faces more bad
projects in the near future. Observe that Controlled Budgeting is absorbing: once
the balance falls low enough—which it eventually does—the agent will never take
a bad project again.

Proposition 2. Fixing an account cap and initial balance x̄ > x > 0, consider the

Dynamic Capital Budget contract �x,x̄.

1. �x,x̄ is an equilibrium if and only if it exhibits nonnegative profit at the cap—

that is,

⇡̄(x̄) := ⇡
✓

! + ✓x̄, b(x̄)
◆

� 0.
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2. Expected discounted revenue is v(x) = ! + ✓x.

3. Expected discounted number of bad projects is b(x) = bx̄(x), uniquely deter-

mined by the delay differential equation

(1 + ⌘)b(x) = ⌘b(x � 1) + xb0(x),

with boundary conditions:

b|(�1,0] = 0

b(x̄) � b(x̄ � 1) = 1.

Proof. The second point follows from substituting into the v promise-keeping con-
straint, and noting that (by work in Section 3) �0,x̄ yields revenue !.

The third point follows from our work in Section 3.
For the first part, v(x) � v(x � 1) = [! + ✓x] � [! + ✓(x � 1)] = ✓ at every x, so

that the agent is always indifferent between taking or leaving a bad project. Thus,
�x,x̄ is an equilibrium if and only if it satisfies principal participation after every
history. Revenue is linear, and b is (by work in Section 3) convex. Therefore, profit
is concave in x. So, profit is nonnegative for all on-path balances if and only if it is
nonnegative at the top. ⇤

Optimality

To gain some intuition as to why the above equilibrium should be optimal, con-
sider how the principal might like to provide different levels of revenue. The case
of revenue v  ! is simple: we know that the principal can provide said revenue
efficiently—via aligned equilibrium. We also know that other contracts—for in-
stance, Expiring Budget contracts—may yield higher revenue; the key issue is how
to provide such higher revenue levels optimally. The principal can provide revenue
and incentives via two instruments: (i) punishing the agent for spending, and (ii)
rewarding the agent for fiscal restraint. Reminiscent of Ray (2002), the DCB con-
tract backloads costly rewards as much as possible. Subject to satisfying the agent’s
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incentive constraint, the DCB contract uses the minimal punishment possible—i.e.
v � ṽ = ✓—whenever delegating to the agent. Increasing the punishment would
accomplish two things, both of them profit-hindering:

1. Following good luck, it would bring the players closer to a low-revenue con-
tinuation, where the principal would then have to inefficiently freeze.

2. In accordance with promise-keeping, the increased punishment would then
require an accompanying reward for waiting. Following bad luck, this would
bring the players to a very high-revenue continuation more quickly, which
would necessarily entail more bad projects.

Our main theorem characterizes a profit-maximizing equilibrium of this game.
In doing so, we, in fact, achieve a characterization of the whole equilibrium payoff
set.

Theorem 2 (DCB Optimality). DelegationIsCool

1. There is a cap x̄⇤ � 0 such that every vector on the Pareto frontier of E⇤ can

be provided by a DCB contract with cap x̄⇤.

2. There is a unique initial balance x⇤ such that the DCB contract of cap x̄⇤

and initial balance x⇤ maximizes the principal’s value among all equilibria.

Moreover, if x̄⇤ > 0, then x⇤ > 0, and the principal’s profit is zero at the top.

3. A vector (v, b) � 0 is an equilibrium payoff vector if and only if it yields

nonnegative profit to the principal and is (weakly) Pareto-inferior to some

DCB contract of cap x̄⇤.

Proof. Let B : [0, v̄] ! R+ describe the efficient frontier of the equilibrium value
set—i.e. B(v) = min{b : (b, v) 2 E⇤}, where v̄ � ! denotes the highest agent value
attainable in equilibrium.

In the appendix, we show that

B(v) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0 = vB0(v) if v 2 [0,!]
⌘B(v � ✓) + (v � !)B0(v)

1 + ⌘
if v 2 (!, v̄)

1 + B(v � ✓) if v = v̄ > !,
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for any v 2 [0, v̄]. We further show that, if v̄ > !, then ⇡ (v̄, B(v̄)) = 0.
We start by focusing on the first claim. By Theorem 1, we know that v̄ � !. If

all equilibria in the efficient frontier are aligned, v̄ = !, any equilibrium payoff can
be supported with initial shutdown followed by the Aligned Optimal Budget. The
latter is exactly the DCB contract with x̄⇤ = 0.

If there is a non-aligned efficient equilibrium, then there is some equilibrium
that begins with delegation and an immediate bad project–i.e. a gift-giving equilib-
rium16; let ṽ denote the continuation revenue after this bad project. If ṽ > !, then
v̄ > !. If ṽ  !, then principal participation implies that (1 � c

✓̄
)! � (c � ✓). In this

case, the DCB contract with x̄ = x = 1 is an equilibrium, so that v̄ > !. Our work
with the frontier then implies that ⇡(v̄, B(v̄)) = 0.

b

v

⇡ = 0

⇡ = (1 � c
✓̄
)!

⇡ = ⇡⇤

v̄!

Figure 3: The solid line traces out the frontier B. The equilibrium value set is the convex region
between B and the dashed zero-profit line. The dashed lines trace different isoprofits. The green dot
highlights the uniquely principal-optimal vector.

Finally, to finish the proof of the first point, all that is needed is to relate the
values of B|[!,v̄] to a family of DCB contracts (with the same cap). Letting x̄⇤ = v̄�!

✓ ,

we now appeal to Proposition 2. For every x 2 [0, x̄⇤], the DCB contract with a cap
of x̄⇤ and an initial balance of x is an equilibrium providing (v, b) = (! + ✓x, B(! +
✓x)).

16By Lemma 5, in the appendix, the agent never privately mixes in efficient equilibrium.
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Toward the second point, first notice that the principal’s objective is linear over
E⇤, so that optimal profit is attained on the graph of B|[!,v̄]. The result follows
trivially if x̄⇤ = 0, there being a unique balance. We now turn our attention to the
case of x̄⇤ > 0. Since B is convex, the first-order approach suffices. By the work
in Section 3, B is C1, so that the FOC holds exactly at the optimum, which can be
true only for v > !. Again, by the work in Section 3, B is strictly convex on [!, v̄],
so that the optimum is unique. Taking an affine transformation, there is a unique
optimal balance x⇤, which is strictly positive.

Toward the third point, the ‘only if’ direction follows from the first point and
from the principal’s participation constraint. For the ‘if’ direction, take any (v, b) 2
E⇤. If v = 0, then b = 0 too (by Principal participation), so that the stage game
equilibrium works. If v̄ = !, notice that (!, b!) 2 E⇤17 where b! is (uniquely) such
that ⇡(!, b!) = 0. It follows that in this case, the equilibrium value set is all of

E⇤ = {(v, b) � 0 : ⇡(v, b) � 0, v  !} = co{(0, 0), (!, 0), (!, b!)}.

If v̄ > !, then zero profit at the top implies that

E⇤ = {(v, b) � 0 : ⇡(v, b) � 0, b � B(v)} = co{(0, 0) [ Graph[B|[!,v̄]]}.

⇤

The heart of the proof is the characterization of the equilibrium frontier B, for-
mally carried out in the appendix. The overall structure of the argument proceeds
as follows. First, allowing for public randomization guarantees us convexity of the
equilibrium set frontier. As a consequence, whenever incentivizing picky project
adoption by the agent, the principal optimally inflicts the minimum punishment
possible. Next, because the principal has no private action or information, we show
that the frontier is self-generating and private mixing unnecessary. Collectively, this
yields a Bellman equation. Next, we show that initial freeze is inefficient for values

17Consider the following profile: the principal plays her continuation strategy exactly as in the
Aligned Optimal Budget; whenever the Principal is delegating, the agent takes every good project
and takes bad projects with Poisson rate � such that b!

! =
�

⌘✓̄+�✓
. One readily verifies that this

equilibrium strategy profile gives payoffs (!, b!).
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above !, and that bad project adoption is wasteful, except when used to provide
value v̄.

A direct consequence of our main theorem is that contracts that involve bad
projects are necessary for optimality. In what follows, let a gift-giving equilibrium

be any equilibrium that begins with a certain project: the principal delegates, and
the agent initiates a project immediately—no questions asked.

Corollary 2. The following are equivalent:

1. There exists a gift-giving equilibrium.

2. Some DCB contract with strictly positive initial balance is an equilibrium.

3. Some (non-aligned) DCB contract with strictly positive initial balance strictly

outperforms the Aligned Optimal Budget.

Proof. To see that (1) implies (2), suppose that there exists a gift-giving equilib-
rium, with an initial gift (i.e. delegation and an immediate project) followed by
�. By the first part of Theorem 2, there is a DCB equilibrium �0—say, of initial
balance x—which (weakly) Pareto dominates �. If x > 0, then (2) follows immedi-
ately; if x = 0, then � yields profit  (1� c

✓̄
)!, and one easily verifies that any DCB

contract of cap 1 is an equilibrium. The second part of Theorem 2 ensures that (2)
implies (3). Finally, that (3) implies (1) follows from considering a subgame when
the account has reached its cap. ⇤

One might suspect that the choice of whether or not to employ bad projects to
incentivize picky project adoption by the agent amounts to evaluating a profit trade-
off by the principal. Surprisingly, the principal faces no such tradeoff. Whenever
a promise of future bad projects can be credible, it is a necessary component of an
optimal contract. Intuition for this result comes from considering DCB contracts
with a fixed cap and extremely low positive balances. As the equilibrium frontier
is continuously differentiable, increasing an agent’s initial balance from zero to a
very low x > 0 provides a first-order revenue increase and a second-order increase
in expected discounted bad projects.
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It may appear surprising that one scalar equation can describe the full equilib-
rium set , even implicitly. This simple structure derives, however, from the paucity
of instruments at the principal’s disposal.

Note, also, that the DCB contract isn’t just optimal; it is essentially uniquely
optimal. While there is some flexibility in providing agent values below !,18 the
optimal way to provide revenue v 2 (!, v̄) is unique. Given that B is strictly convex
at v, B(v) < 1 + B(v � ✓), and B(v) < vB0(v), optimality demands initial delegation
paired with picky project adoption and minimum punishment per project. Every
principal-optimal contract, therefore, consists of two regimes, the first of which is
Capped Budgeting (with the same cap and initial balance). In this sense, dynamic
budgeting is not just a useful tool for repeated delegation but, in fact, a necessary
one.

Existence of Gift-Giving Equilibria

Theorem 2 provides a complete characterization of the equilibrium payoff set, tak-
ing the existence or non-existence of gift-giving equilibria for granted. For any fixed
parameters ⌘, ✓̄, ✓, and c, we can determine the existence or non-existence compu-
tationally,19 but we can gain some insight through various sufficient conditions.

Consider the ratio of the net cost of a bad project to the principal’s first-best
profit,

⇢ =
c � ✓
⌘(✓̄ � c)

.

This ratio is a crude measure of the tradeoff between a bad project today and the
principal’s future prospects. Even so, for some parameter values, ⇢ fully resolves
the existence question.

If ⇢ > 1, the principal would rather sever the relationship, irrespective of its
future value, than admit a bad project: gift-giving is not credible. If ⇢ < ✓̄�✓

✓̄
,

18We saw such an example in Section 3, in the “A Smaller Stick” subsection.
19Given parameters, we establish an upper bound for the set of possible account caps, ¯̄x = !

c�✓
from principal participation. We numerically solve the delay differential equation in Section 3 of
the appendix up to said upper bound. We then explicitly compute the profit at the cap, for each hy-
pothetical cap below the upper bound. In light of Corollary 2, existence of a gift-giving equilibrium
is then equivalent to one of these profits being nonnegative.
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the profit from the aligned optimal budget more than offsets the net cost of a bad
project. Thus, a DCB contract with a cap of 1 is an equilibrium.

While the above sufficient conditions are inconclusive, we note that they reduce
the existence problem to the value of ⇢ whenever the value of a good project dwarfs
that of a bad one—i.e. when ✓̄

✓ ⇡ 1. In this case, the inconclusive range [ ✓̄�✓
✓̄
, 1]

vanishes. In other circumstances, these conditions still yield interpretable predic-
tions. When c ⇡ ✓, the principal loses very little from admitting a bad project; thus,
(⇢ ⇡ 0 tells us) a gift-giving equilibrium exists. When c ⇡ ✓̄, the principal has very
little to gain from the relationship’s continuation; thus, (⇢ ⇡ 1 tells us) gift-giving
cannot happen in equilibrium. Finally, if ⌘ ⇡ 1 players are effectively more patient,
increasing the future value of their relationship; thus, (⇢ ⇡ 0 tells us) gift-giving can
be credibly sustained.

Comparative Statics

In light of Theorem 2, a principal-optimal contract is characterized by two elements:
how much freedom the principal can credibly give the agent (the cap), and how
much freedom the principal chooses to initially give the agent (the initial balance).
The first describes the equilibrium payoff set, while the second selects the principal-
optimal contract therein. In this subsection, we ask how these features change as
the environment the players face varies. As parameters of the model change, and
the pool of projects becomes more valuable, the agent enjoys greater sovereignty,
with both the balance cap and the optimal initial balance increasing.

Proposition 3. For any profile of parameters that satisfy Assumptions 1 and 2,

define the account cap X̄(✓̄, ✓, c), and the optimal initial account balance X⇤(✓̄, ✓, c),
as delivered by Theorem 2. Both functions are increasing in the revenue parameters

✓̄, ✓, and decreasing in the cost parameter c. Moreover, these comparisons are strict

in the range where the cap is strictly positive.

We provide a proof in Section 4 of the appendix. Consider the interesting case,
in which the cap is strictly positive. We first analyze a slight increase in a revenue
parameter and observe that the profit at the original cap increases. This implies that
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a slight cap increase maintains the principal’s credibility, and it is now an equilib-
rium. This delivers the first half of our comparative statics result: the new equi-
librium has a higher account cap, offering greater flexibility to the agent. As the
account cap increases, the frontier of the equilibrium set gets flatter at each account
balance. Moreover, as revenue parameters increase, the principal’s isoprofit curves
can only get steeper. Accordingly, the unique tangency between the equilibrium
frontier and an isoprofit occurs at a higher balance. This delivers the remaining
comparative statics result: the agent is also given more initial leeway. A similar
analysis applies to a cost reduction.

Of particular interest is the role of ✓ in determining the optimal DCB account
structure. On the one hand, the principal suffers less from a bad project when ✓
is higher; on the other, the agent is more tempted. We show that the former effect
always dominates in determining how much freedom the principal optimally gives
the agent.

5 Extensions

In this section, we briefly describe some extensions to our model. For simplicity,
we restrict attention to the case where gift-giving equilibria exist. The proofs are
straightforward and omitted.

Monetary Transfers

We maintain the assumption of limited liability: A cannot give P money. If P can
reward A’s fiscal restraint through direct transfers, one of two things happens: (i)
nothing changes and money is not used; or (ii) money simply replaces bad projects
as a reward if money is more cost-effective. Which is more efficient depends on
the relative size of the marginal cost of allowing the agent to initiate bad projects20

(c�✓)B0(v̄) and the marginal reward of doing so ✓. If providing monetary incentives
is optimal, a modified DCB contract is used. The cap is raised,21 and the agent is

20This calculation is done using the B from our original model, as characterized in Theorem 2.
The condition is correct if v̄ > !; otherwise, it is optimal to use monetary transfers.

21The cap is raised to ensure zero profit with the new, more efficient incentivizing technology.
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paid a flow of cash whenever his balance is at the cap. This modified DCB contract
is reminiscent of the optimal contract in Biais et al. (2010).

Permanent Termination

In many applications, being in a given relationship automatically entails delegating.
If a client hires a lawyer, she delegates the choice of hours to be worked. To stop
delegating is to terminate the relationship, giving both players zero continuation
values.22 That is, at any moment, the principal must choose between fully dele-
gating and ending the game forever. At first glance, this constraint may seem an
additional burden on the principal. However, given our optimal contract (with all
freeze backloaded to the Controlled Budget regime), we see that it changes nothing.
Indeed, replacing a temporary freeze with stochastic termination23 leaves payoffs
and incentives unchanged.

Agent Replacement

We propose an extension in which the principal has a means to punish the agent
without punishing herself: the principal can fire the agent and immediately hire a
new agent. The credibility of the threat of replacement takes us far from our leading
examples: for instance, the state government cannot sever its relationship with one
of its counties.

A fired agent gets a continuation payoff of zero.24 Every time the principal hires
a new agent, she proposes a new contract. We argue below that any inefficiency that
the principal faces, as well as any interesting relationship dynamics in the contracts,
vanish: in any equilibrium, the principal always delegates to the current agent, who,
in turn, exercises fiscal restraint.

22The agent could have a positive outside option. As long as it is below !� ✓, the same argument
holds.

23Keep Capped Budgeting exactly the same. In Controlled Budgeting, replace the duration
log !

!�✓|x| freeze with a probability ✓
! |x| termination. As the principal prefers not to terminate the

relationship, the randomization must be public.
24Again, a positive agent outside option below ! � ✓ would change nothing.
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In our original model, the only relevant constraint for the principal was the par-
ticipation constraint. Now, the better outside option for the principal limits the
credible promises that she can make to the agent. Being able to terminate this rela-
tionship and begin—on her own terms—a new one with a new agent, the principal
must expect from this relationship (at any history) at least what she would from a
new one—i.e. her optimal value. That P’s outside option and her optimal value
coincide forces the principal to claim the same continuation payoff following any
history. Finally, note that the principal’s first-best profit is attainable: P delegates,
A initiates only good projects, and every project is followed with agent replace-
ment. In this contract, the principal never freezes: she always delegates to the
current agent, who, in turn, adopts only good projects. Although each relationship
has, at most, an expected revenue of !—and, thus, is less profitable than in the
optimal DCB contract—the principal’s expected total profit across relationships is
the first-best ⌘(✓̄ � c).

Commitment

If P has the ability to commit, she can offer A long-term rewards. In particular,
she can offer him tenure (delegation forever) if he exerts fiscal restraint for a long
enough time. With full commitment power, slight modifications of our argument
show that v̄ is the first-best revenue.25 Guo and Hörner (2014) discuss this case
more directly, using the methodology of Spear and Srivastava (1987).

6 Final Remarks

In this paper, we have presented an infinitely repeated instance of the delegation
problem. The agent will not represent the principal’s interests without being of-
fered dynamic incentives, while the principal cannot credibly commit to long-term
rewards.

First, we characterize equilibria that eschew reliance on lenience-based rewards.
The principal’s hands are tied: she can punish the agent only by limiting her future

25We focus on the discrete time setting, so that the agent’s first-best outcome is finite.
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reliance on his private information, thus harming herself. The Aligned Optimal
Budget pairs discerning project adoption with the minimum-length freeze to incen-
tivize it.

Second, we explore the efficiency gains that are possible if bad projects are used
as a costly bonus. The promise of future rewards can better incentivize good behav-
ior from the agent, and the value of the future relationship can make such rewards
credible for the principal. We characterize the principal-optimal such equilibrium,
the Dynamic Capital Budget contract, which comprises two regimes. In the first
regime, Capped Budgeting, the agent has an expense account, which grows at the
interest rate so long as its balance is below its cap; the principal fully delegates, with
every project being financed from the account. The agent takes every available good
project; only when at the cap does he adopt projects indiscriminately. Eventually,
the account runs dry, and the players transition to the second regime, Controlled
Budgeting, wherein they follow the Aligned Optimal Budget. Not only is the DCB
contract profit-maximizing, but it in fact traces out the whole equilibrium value set;
we note that the analysis and results apply at any fixed discount rate.26

The optimal contract suggests rich dynamics for the relationship. Early on,
in Capped Budgeting, the relationship is highly productive but low-yield: the agent
adopts every good project, but some bad projects as well. The lack of principal com-
mitment limits the magnitude of credible promises, resulting in a transient Capped
Budgeting phase. As the relationship matures to Controlled Budgeting, it is high-
yield but less productive: the agent adopts only good projects, but some good op-
portunities go unrealized. In this sense, the relationship drifts toward conservatism.

While our main applications concern organizational economics outside of the
firm, we believe that our results also speak to the canonical firm setting.27 If the
relationship between a firm and one of its departments proceeds largely via delega-
tion, then we shed light on the dynamic nature of this relationship. In doing so, we
provide a novel foundation for dynamic budgeting within the firm.

26In particular, our analysis is not a folk theorem analysis.
27The conflict of interest in our model may reflect an empire-building motive on the part of a

department, or it may be an expression of the Baumol (1968) sales-maximization principle.
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Online Appendix: Not for Publication
This online appendix provides formal proof for the results on which the main

text draws. First, we provide a characterization of the equilibrium payoff set of the
discrete-time game. Then, we provide auxiliary computations concerning Expiring
Budget contract. Next, we prove several useful properties of the Delay Differen-
tial Equation which characterizes the frontier of the limit equilibrium set. Finally,
we derive comparative statics results for the optimal cap and initial balance of a
Dynamic Capital Budget contract.

1 APPENDIX: Characterizing the Equilibrium Value
Set

In the current section, we characterize the equilibrium value set in our discrete time repeated
game. As in the main text, we find it convenient to study payoffs in terms of agent value

and bad projects. Accordingly, for any strategy profile �, we let

v(�) = E�
2
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Below, we will analyze the public perfect equilibrium (PPE) value set,

E⇤ = ��

v(�), b(�)
�

: � is a PPE
 ✓ R2

+.

1.1 Self-Generation

To describe the equilibrium value set E, we rely heavily on the machinery of Abreu, Pearce,
and Stacchetti (1990), APS. To provide the players a given value y = (v, b) from today
onward, we factorize it into a (possibly random) choice of what happens today, and what
the continuation will be starting tomorrow. What happens today depends on the probability
(p) that the principal delegates, the probability (ā) of project adoption if a project is good,
and the probability (a) of project adoption if a project is bad. The continuation values may
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vary based on what happens today: the principal may choose to freeze (y̌), the principal
may delegate and agent may take a project (ỹ), or the principal may delegate and agent may
not take a project (y0). Since the principal doesn’t observe project types, these are the only
three public outcomes.

We formalize this factorization in the following definition and theorem.

Definition 2. Given Y ✓ R2:

• Say y 2 R2 is purely enforceable w.r.t. Y if there exist p, ā, a 2 [0, 1] and y̌, ỹ, y0 2 Y

such that:28

1. (Promise keeping):

y = (1 � p)�y̌ + ph
n

ā
h

(✓̄, 0) + �ỹ
i

+ (1 � ā)�y0
o

+p(1 � h)
n

a
h

(✓, 1) + �ỹ
i

+ (1 � a)�y0
o

= (1 � p)�y̌ + p
⇢

hā
h

(✓̄, 0) + �(ỹ � y0)
i

+ (1 � h)a
h

(✓, 1) + �(ỹ � y0)
i

+ �y0
�

.

2. (Incentive-compatibility):

p 2 arg max
p̂2[0,1]

p̂
⇢

hā
h

(✓̄ � c) + �[⇡(ỹ) � ⇡(y0)]
i

+ (1 � h)a
h

(✓ � c) + �[⇡(ỹ) � ⇡(y0)]
i

+ �⇡(y0) � �⇡(y̌)
�

,

ā 2 arg max
â2[0,1]

â
n

✓̄ + �[v(ỹ) � v(y0)]
o

,

a 2 arg max
â2[0,1]

â
n

✓ + �[v(ỹ) � v(y0)]
o

.

• Say y 2 R2 is enforceable w.r.t. Y if there exists a Borel probability measure µ on R2

such that

1. y =
R

R2 ŷ dµ(ŷ).

2. ŷ is purely enforceable almost surely with respect to µ(ŷ).

• Let W(Y) := {y 2 R2 : y is enforceable with respect to Y}.

• Say Y ✓ R2 is self-generating if Y ✓ W(Y).

28With a slight abuse of notation, for a given y = (y1, y2) 2 R2, we will let v(y) := y1.
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Adapting methods from Abreu, Pearce, and Stacchetti (1990), one can readily charac-
terize E via self-generation, through the following collection of results.

Lemma 2. Let W be as defined above.

• The set operator W : 2R2 �! 2R2
is monotone.

• Every bounded, self-generating Y ✓ R2 is a subset of E⇤.

• E⇤ is the largest bounded self-generating set.

• W(E⇤) = E⇤.

• Let Y0 ✓ R2 be any bounded set with29 E⇤ ✓ W(Y0) ✓ Y0. Define the sequence

(Yn)1n=1 recursively by Yn := W(Yn�1) for each n 2 N. Then
T1

n=1 Yn = E⇤.

1.2 A Cleaner Characterization

In light of the above, understanding the operator W will enable us to fully describe E⇤. That
said, the definition of W is somewhat cumbersome. For the remainder of the current section,
we work to better understand it.

Before doing anything else, we restrict attention to a useful domain for the map W.

Notation. Let Y := {Y ✓ R2
+ : ~0 2 Y, Y is compact and convex, and ⇡|Y � 0}.

We need to work only with potential value sets in Y. Indeed, the feasible set Ē belongs
to Y, and it is straightforward to check that W takes elements of Y to Y. Since Y is closed
under intersections, we then know from the last bullet of the result above, Lemma 2, that
E 2 Y.

In seeking a better description of W, the following auxiliary definitions are useful.

Definition 3. Given a 2 [0, 1] :

• Say y 2 R2
+ is a-Pareto enforceable w.r.t. Y if there exist ỹ, y0 2 Y such that:

1. (Promise keeping):

y = h
h

(✓̄, 0) + �(ỹ � y0)
i

+ (1 � h)a
h

(✓, 1) + �(ỹ � y0)
i

+ �y0.

29This can be ensured, for instance, by letting E⇤ contain the feasible set, scaled by 1
1�� .

43



2. (Agent incentive-compatibility):

1 2 arg max
â2[0,1]

â
n

✓̄ + �[v(ỹ) � v(y0)]
o

,

a 2 arg max
â2[0,1]

â
n

✓ + �[v(ỹ) � v(y0)]
o

.

3. (Principal participation): ⇡(y) � 0.

• Let Wa(Y) := {y 2 R2
+ : y is a-Pareto enforceable w.r.t. Y}.

• Let W f (Y) := �Y .

• Let Ŵ(Y) := W f (Y) [S

a2[0,1] Wa(Y). If Y is compact, then so is Ŵ(Y).30

The set Ŵ(Y) captures the enforceable (without public randomizations) values w.r.t. Y if:

1. The principal uses a pure strategy.

2. We relax principal IC to a participation constraint.

3. If the principal delegates and the project is good, then the agent takes the project.

The following proposition shows that, for the relevant Y 2 Y, it is without loss to focus
on coŴ instead of W. The result is intuitive. The first two points are without loss because
the principal’s choices are observable. Toward (1), her private mixing can be replaced
with public mixing with no effect on A’s incentives. Toward (2), if the principal faces
nonnegative profits with any pure action, she can be incentivized to take said action with
stage Nash (min-max payoffs) continuation following the other choice. Toward (3), the
agent’s private mixing isn’t (given (2)) important for the principal’s IC, and so we can
replace it with public mixing between efficient (i.e. no good project being passed up) first-
stage play and an initial freeze.

Lemma 3. If Y 2 Y, then W(Y) = coŴ(Y).

Proof. First, notice that �Y ✓ W(Y) \ coŴ(Y). It is a subset of the latter by construction,
and of the former by choosing ỹ = y0 = ~0, p = 1, ā = a = 1, and letting y̌ range over Y .

30Indeed, it is the union of �Y and a projection of the compact set {(a, y) 2 [0, 1] ⇥ R2 :
y is a-Pareto enforceable w.r.t. Y}.
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Take any y 2 Ŵ(Y) that isn’t in �Y . So y is a-Pareto enforceable w.r.t. Y for some
a 2 [0, 1], say witnessed by ỹ, y0 2 Y . Letting p = 0, ā = 1, and y̌ = ~0 2 Y , it is immediate
that p, ā, a 2 [0, 1] and y̌, ỹ, y0 2 Y witness y being purely enforceable w.r.t. Y . Therefore,
y 2 W(Y). So Ŵ(Y) ✓ W(Y). The latter being convex, coŴ(Y) ✓ W(Y) as well.

Take any extreme point y of W(Y) which isn’t in �Y. Then y must be purely enforceable
w.r.t. Y , say witnessed by p, ā, a 2 [0, 1] and y̌, ỹ, y0 2 Y . First, if pā = 0, then31

y = (1 � p)�y̌ 2 co{~0, �y̌} ✓ �Y ✓ Ŵ(Y).

Now suppose pā > 0, and define32 ap :=
a
ā

and

yp := h
h

(✓̄, 0) + �(ỹ � y0)
i

+ (1 � h)ap
h

(✓, 1) + �(ỹ � y0)
i

+ �y0.

Observe that ỹ, y0 witness yp 2 Wap(Y):

1. Promise keeping follows immediately from the definition of yp.

2. Agent IC follows from agent IC in enforcement of y, and from the fact that incentive
constraints are linear in action choices. As ā > 0 was optimal, āp = 1 is optimal here
as well.

3. Principal participation follows from principal IC in enforcement of y, and from the
fact that ⇡(y̌) � 0 because ⇡|Y � 0.

Therefore yp 2 Wap(Y), from which it follows that y = (1 � p)�y̌ + pāyp 2 co{�y̌, yp,~0} ✓
Ŵ(Y).
As every extreme point of W(Y) belongs to Ŵ(Y), all of W(Y) belongs to the closed convex
hull of Ŵ(Y), which is just coŴ(Y).33 ⇤

In view of the above proposition, we now only have to consider the much simpler map
Ŵ. As the following lemma shows, we can even further simplify, by showing that there is
never a need to offer excessive punishment. That is, it is without loss to (1) make the agent’s
IC constraint (to resist bad projects) bind if he is being discerning, and (2) not respond to
the agent’s choice if he is being indiscriminate.

31If pā = 0, then either p = 0 or ā = 0. If ā = 0, then agent IC implies a = 0. So either p = 0 or
a = ā = 0; in either case, promise keeping then implies y = (1 � p)�y̌.

32Since a  ā by IC, we know ap 2 [0, 1].
33The disappearance of the qualifier “closed” comes from Carathéodory’s theorem, since Ŵ(Y) is

compact in Euclidean space.
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Lemma 4. Fix a 2 [0, 1], Y 2 Y, and y 2 R2:

Suppose a < 1. Then y 2 Wa(Y) if and only if there exist z̃, z0 2 Y such that:

1. (Promise keeping):

y = h
h

(✓̄, 0) + �(z̃ � z0)
i

+ (1 � h)a
h

(✓, 1) + �(z̃ � z0)
i

+ �z0.

2. (Agent exact incentive-compatibility):

�[v(z0) � v(z̃)] = ✓.

3. (Principal participation): ⇡(y) � 0.

Suppose a = 1. Then y 2 Wa(Y) if and only if there exists z0 2 Y such that:

1. (Promise keeping):

y = h(✓̄, 0) + (1 � h)(✓, 1) + �z0

2. (Principal participation): ⇡(y) � 0.

Proof. In the first case, the “if” direction is immediate from the definition of Wa. In the
second, it is immediate once we apply the definition of W1 with z̃ = z0. Now we proceed to
the “only if” direction.

Consider any y 2 Wa(Y), with ỹ, y0 witnessing a-Pareto enforceability. Define

ȳ := [h + a(1 � h)]y0 + (1 � h)(1 � a)ỹ 2 Y.

So ȳ is the on-path expected continuation value.
In the case of a < 1, define

q :=
✓

�[v(y0) � v(ỹ)]
�2 [0, 1], by IC

�

z̃ := (1 � q)ȳ + qỹ

z0 := (1 � q)ȳ + qy0.

By construction, �[v(z0) � v(z̃)] = ✓, as desired.34

34In the case of a 2 (0, 1), q = 1 (by agent IC), so that z̃ = ỹ and z0 = y0. The real work was
needed for the case of a = 0.
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In the case of a = 1, let z0 := ȳ and z̃ := z0.
Notice that z̃, z0 witness y 2 Wa(Y). Promise keeping comes from the definition of ȳ,

principal participation comes from the hypothesis that Wa(Y) 3 y, and IC (exact in the case
of a < 1) comes by construction. ⇤

In the first part of the lemma, �[v(y0) � v(ỹ)] 2 [✓, ✓̄] has been replaced with �[v(y0) �
v(ỹ)] = ✓. That is, it is without loss to make the agent’s relevant incentive constraint—to
avoid taking bad projects—bind. This follows from the fact that Y ◆ co{ỹ, y0}. The second
part of the lemma says that, if the agent isn’t being at all discerning, nothing is gained from
disciplining him.

The above lemma has a clear interpretation, familiar from the Aligned Optimal Budget:
without loss of generality, the principal uses the minimal possible punishment. The lemma
also yields the following:

Lemma 5. Suppose a 2 (0, 1), Y 2 Y, and y 2 Wa(Y). Then there is some y⇤ 2 W0 such that

v(y⇤) = v(y) and b(y⇤) < b(y).

That is, y⇤1 = y1 and y⇤2 < y2.

Proof. Appealing to Lemma 4, there exist z̃, z0 2 Y such that:

1. (Promise keeping):

y = h
h

(✓̄, 0) + �(z̃ � z0)
i

+ (1 � h)a
h

(✓, 1) + �(z̃ � z0)
i

+ �z0

2. (Agent exact incentive-compatibility):

�[v(z0) � v(z̃)] = ✓

3. (Principal participation): ⇡(y) � 0.

Given agent exact IC, we know v(z0) > v(z̃). Let z̃⇤ :=
 

v(z̃),min
(

b(z̃),
v(z̃)
v(z0)

b(z0)
)!

. As

either z̃⇤ = z̃ or z̃⇤ 2 co{~0, z0}, we have z⇤ 2 Y.
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Let y⇤ := h
h

(✓̄, 0) + �(z̃⇤ � z0)
i

+ �z0. Then

v(y) � v(y⇤) = (1 � h)a
n

✓ + �[v(z̃⇤) � v(z0)]
o

� h�[v(z̃⇤) � v(z̃)]

= (1 � h)a
n

✓ + �[v(z̃) � v(z0)]
o

� h�0

= 0,

while

b(y) � b(y⇤) = (1 � h)a
�

1 + �[b(z̃) � b(z0)]
 � h�[b(z̃⇤) � b(z̃)]

= (1 � h)a
�

1 + �[b(z̃⇤) � b(z0)] + �[b(z̃) � b(z̃⇤)]
 � h�[b(z̃⇤) � b(z̃)]

= (1 � h)a
�

1 + �[b(z̃⇤) � b(z0)]
 

+ [h + (1 � h)a]�[b(z̃) � b(z̃⇤)]

� (1 � h)a

> 0.

Now, notice that z̃⇤, z0 witness y⇤ 2 W0(Y). Promise keeping holds by fiat, agent IC
holds because v(z̃⇤) = v(z̃) by construction, and principal participation follows from

⇡(y⇤) � ⇡(y) = �⇡(0, b(y) � b(y⇤)) > 0.

⇤

The above lemma is a strong bang-bang result. It isn’t just sufficient to restrict attention
to equilibria with no private mixing; it is necessary too. Any equilibrium in which the agent
mixes on-path is Pareto dominated.

1.3 Self-Generation for Frontiers

Through Lemmata 3, 4, and 5, we greatly simplified analysis of the APS operator W ap-
plied to the relevant value sets. In the current section, we profit from that simplification
in characterizing the efficient frontier of E⇤. Before we can do that, however, we have to
make a small investment in some new definitions. We then translate the key results of the
previous subsection into results about the efficient frontier of the equilibrium set.

Notation. Let B denote the space of functions B : R �! R+ [ {1} such that: (1) B is

convex, (2) B(0) = 0, (3) B’s proper domain dom(B) := B�1(R) is a compact subset of R+,

(4) B is continuous on dom(B), and (5) ⇡(v, B(v)) � 0 for every v 2 dom(B).
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Just asY is the relevant space of value sets, B is the relevant space of frontiers of value sets.

Notation. For each Y 2 Y, define the efficient frontier function of Y:

BY : R �! R+ [ {1}
v 7�! min{b 2 R+ : (v, b) 2 Y}

It is immediate that for Y 2 Y, the function BY belongs to B.

Notation. Define the following functions:

T : B �! B
B̂ 7�! BW

�

co[graph(B̂)]
� = BcoŴ

�

co[graph(B̂)]
�,

T f : B �! B
B̂ 7�! BW f

�

co[graph(B̂)]
� = B

�
�

co[graph(B̂)]
�,

and for 0  a  1, Ta : B �! B
B̂ 7�! BWa

�

co[graph(B̂)]
�.

These objects are not new. The map T [resp. T f , Ta] is just a repackaging of W [resp. W f ,
Wa], made to operate on frontiers of value sets, rather than on value sets themselves.

As it turns out, we really only need Lemmata 3, 4, and 5 to simplify our analysis of T ,
which in turn helps us characterize the efficient frontier of E⇤.We now proceed along these
lines.

The following lemma is immediate from the definition of the map Y 7! BY .

Lemma 6. If {Yi}i2I ✓ Y, then Bco[Si2I Yi] is the convex lower envelope35 of infi2I BYi .

The following proposition is the heart of our main characterization of the set E⇤’s fron-
tier. It amounts to a complete description of the behavior of T.

Proposition 4. Fix any B 2 B and v 2 R. Then:

1. T B = cvx
h

min
n

T f B,T0B,T1B
oi

.

35The convex lower envelope of a function B̌ is cvxB̌,the largest convex upper-semicontinuous
function below it. Equivalently, cvxB̌ is the pointwise supremum of all affine functions below B̌.

49



2. For i 2 { f , 0, 1},

TiB(v) =

8

>

>

>

<

>

>

>

:

ŤiB(v) if ⇡
⇣

v, Ť�i B(v)
⌘

� 0

1 otherwise,

where

Ť f B(v) := �B
✓v
�

◆

Ť0B(v) := �

"

hB
✓v � ✓E
�

◆

+ (1 � h)B
 

v � [✓E � ✓]
�

!#

Ť1B(v) := (1 � h) + �B
✓v � ✓E
�

◆

Proof. That T B = cvx
h

min
n

T f B, infa2[0,1] TaB
oi

is a direct application of Lemma 6.
Then, appealing to Lemma 5, TaB � T0B for every a 2 (0, 1). This proves the first point.

In what follows, let Y := co[graph(B)] so that T B = BW(Y).

• Consider any y 2 W0(Y):
Lemma 4 delivers z̃, z0 2 Y such that

y = h
h

(✓̄, 0) + �(z̃ � z0)
i

+ �z0,

✓ = �[v(z0) � v(z̃)].

Rewriting with z̃ = (ṽ, b̃) and z0 = (v0, b0), and rearranging yields:

✓ = �[v0 � ṽ]

(v, b) = h
h

(✓̄, 0) + �(ṽ � v0, b̃ � b0)
i

+ �(v0, b0)

= h
⇣

✓̄ � ✓, �[b̃ � b0]
⌘

+ �(v0, b0)

=
⇣

✓E � ✓ + �v0, h�b̃ + (1 � h)�b0
⌘

Solving for the agent values yields

v0 =
v � [✓E � ✓]

�
and ṽ = v0 � ��1✓ =

v � ✓E
�
.
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So given any v 2 R+:

T0B(v) = inf
b,b̃,b0

b

s.t. ⇡(v, b) � 0, b = �
h

hb̃ + (1 � h)b0
i

, and
 

v � [✓E � ✓]
�

, b0
!

,
✓v � ✓E
�
, b̃

◆

2 Y

= inf
b,b̃,b0

b = �
h

hb̃ + (1 � h)b0
i

s.t. ⇡(v, b) � 0 and
 

v � [✓E � ✓]
�

, b0
!

,
✓v � ✓E
�
, b̃

◆

2 Y

=

8

>

>

>

<

>

>

>

:

b = �
h

hB
⇣

v�✓E
�

⌘

+ (1 � h)B
⇣ v�[✓E�✓]

�

⌘i

if ⇡(v, b) � 0,

1 otherwise.

• Consider any y 2 W1(Y):
Lemma 4 now delivers z0 = (v0, b0) 2 Y such that

y = h(✓̄, 0) + (1 � h)(✓, 1) + �z0,

which can be rearranged to

(v, b) =
�

✓E + �v0, (1 � h) + �b0
�

.

So given any v 2 R+:

T1B(v) = inf
b,b0

b

s.t. ⇡(v, b) � 0, b = (1 � h) + �b0, and
✓v � ✓E
�
, b0

◆

2 Y

= inf
b̃,b0

b = (1 � h) + �b0

s.t. ⇡(v, b) � 0 and
✓v � ✓E
�
, b0

◆

2 Y

=

8

>

>

>

<

>

>

>

:

b = �B
⇣

v�✓E
�

⌘

if ⇡(v, b) � 0,

1 otherwise.
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• Lastly, given any v 2 R+:

T f B(v) = inf
b,b0

b

s.t. ⇡(v, b) � 0, b = �b0, and
✓v
�
, b0

◆

2 Y

=

8

>

>

>

<

>

>

>

:

b = �B
⇣

v
�

⌘

if ⇡(v, b) � 0,

1 otherwise.

⇤

1.4 The Efficient Frontier

In this subsection, we characterize the frontier BE⇤ of the equilibrium value set. We first
translate APS’s self-generation to the setting of frontiers. This, along with Proposition
4 delivers our Bellman equation, Corollary 3. Then, in Theorem 1, we characterize the
discrete time equivalent of the Aligned Optimal Budget. Finally, in Theorem 2, we fully
characterize the frontier BE⇤ .

Theorem 3. Suppose Y 2 Y with W(Y) = Y . Then T BY = BY .

Proof. First, because W is monotone, W(co[graph(BY )]) ✓ W(Y) = Y. Thus the efficient
frontier of the former is higher than that of the latter. That is, T BY � BY .

Now take any v 2 dom(BY ) such that y := (v, BY (v)) is an extreme point of Y . We want
to show that T BY (v)  BY (v).

By Lemma 3, y 2 W f (Y) [S

a2[0,1] Wa(Y).

• If y 2 W f (Y), then y
� ,
~0 2 Y , so that the extreme point y must be equal to ~0. But in

this case, T BY (v) = T BY (0) = 0 = BY (0) = BY (v).

• If y 2 Wa(Y) for some a 2 [0, 1], say witnessed by ỹ, y0 2 Y , then let

z̃ := (v(ỹ), BY (v(ỹ)))

z̃0 :=
�

v(y0), BY (v(y0))
�

z := h
h

(✓̄, 0) + �(z̃ � z0)
i

+ (1 � h)a
h

(✓, 1) + �(z̃ � z0)
i

+ �z0.
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Then

b(z) = (1 � h)a + [h + (1 � h)a]�BY (v(ỹ)) + (1 � h)(1 � a)�BY (v(y0))

 (1 � h)a + [h + (1 � h)a]�b(ỹ) + (1 � h)(1 � a)�b(y0)

= b(y) = BY (v),

and z̃, z0 witness z 2 Wa(co[graph(BY )]). In particular, T BY (v) = T BY (v(z))  b(z) 
BY (v)

Next, consider any v 2 dom(BY ). There is some probability measure µ on the extreme
points of Y such that (v, BY (v)) =

R

Y y dµ(y). By minimality of BY (v), it must be that y 2
graph(BY ) a.s.-µ(y). So letting µ1 be the marginal of µ on the first coordinate, (v, BY (v)) =
R

v(Y)(u, BY (u)) dµ1(u), so that

BY (v) =
Z

v(Y)
BY dµ1 �

Z

v(Y)
T BY dµ1 � T BY (v),

where the last inequality follows from Jensen’s theorem.
This completes the proof.

⇤

The Bellman equation follows immediately.

Corollary 3. B := BE solves the Bellman equation B = cvx
h

min
n

T f B, T0B, T1B
oi

.

Aligned Optimum In line with the main text, we now proceed to characterize the pay-
offs attainable in equilibria with no bad projects.

Notation. Define the discrete time36 marginal value of search, ! :=
h

1 � � (✓̄ � ✓).

Before proceeding, we record the discrete time expression of Assumption 2. It is worth
highlighting that, as �! 0, the continuous time version implies the discrete time one.

Assumption 2.
�! � ✓ or, equivalently, ! � ✓E .

36Notice that, given parametrization (�, h) = (1��, ⌘�), this coincides exactly with the definition
from the main text.
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Similarly to the main text, we assume Assumption 2 holds throughout the following
analysis, unless otherwise stated. We now state our aligned equilibrium result.

Theorem 1 (Aligned Optimum). DelegationIsCool

1. There exist productive aligned equilibria if and only if Assumption 2 holds.

2. Every aligned equilibrium generates revenue  !.

3. Given Assumption 2, (!, 0) 2 E⇤.

Proof. We proceed in reverse. For (3), assumption 2 holds and define B(v) = 0 for v 2
[0,!] and B(v) = 1 otherwise. Notice that, T B(!)  T B0(!) = �hB(!�exth

� ) + �(1 �
h)B(!��!� ) = 0, where the first equality holds by Assumption 2. Because T B is convex, B

is self-generating, and thus B � BE⇤ . (3) follows.
We now proceed to verify (2), i.e. that v̂ > ! implies that (0, v̂) < E⇤.

Suppose v > ! has BE⇤(v) = 0. Then BE⇤ |[0,v] = 0, and

0 = BE⇤(v) = T BE⇤(v) = min{T f BE⇤(v),T0BE⇤(v),T1BE⇤(v)}.

Notice that T BE⇤(v) , T1BE⇤(v) as the latter is > 0. If T BE⇤(v) = T f BE⇤(v), then since BE⇤

is increasing

BE⇤
 

v +
1 � �
�

(v � !)
!

 BE⇤
 

v +
1 � �
�

v
!

= ��1T f BE⇤(v) = 0.

Finally, if T BE⇤(v) = T0BE⇤(v), then37

0 = BE⇤
 

v � (1 � �)!
�

!

= �BE⇤
 

v +
1 � �
�

(v � !)
!

.

So either way, BE⇤
⇣

v + 1��
� (v � !)

⌘

= 0 too.
Now, if v̂ > ! with (0, v̂) 2 E⇤, then applying the above inductively yields a sequence38

vn ! 1 on which BE⇤ takes value zero. This would contradict the compactness of BE⇤’s
proper domain.

By (3) we know that productive aligned equilibria exist if Assumption 2 holds. To see
the necessity of the assumption, suppose for a contradiction that it doesn’t hold and yet

37Since a weighted average of two nonnegative numbers can be zero only if both numbers are
zero.

38Let v0 = v̂ and vn+1 = vn +
1��
� (vn � !) � v̂ + n(v̂ � !).
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some productive aligned equilibrium exists. Let v be the agent’s continuation value at some
on-path history at which the principal delegates. By (2), we know v  !. As Assumption 2
fails, we then know �v < ✓, contradicting agent IC. ⇤

Optimality Now, focus on the frontier of the whole equilibrium set. Before proceeding
to the full characterization, we establish a single crossing result: indiscriminate project
adoption is initially used only for the highest agent values.

Lemma 7. Fix B 2 B, and suppose B�1(0) = [0,!]:

1. If v > !, then T0B(v) < T f B(v) (unless both are1).

2. There is a cutoff v � ! such that

8

>

>

>

<

>

>

>

:

T0B(v)  T1B(v) if v 2 [!, v);

T0B(v) � T1B(v) if v > v.

Proof. B(!) = 0, and B is convex. Therefore, B is strictly increasing above! on its domain,
so that39 Ť f B(v) > Ť0B(v), confirming the first point.

Given v,
v � [✓E � ✓]

�
� v � ✓E
�
= ��1✓

is a nonnegative constant.
Since B is convex, it must be that the continuous function

v 7! Ť0B(v) � Ť1B(v) = �(1 � h)
"

B
 

v � [✓E � ✓]
�

!

� B
✓v � ✓E
�

◆

#

� (1 � h)

is increasing on its proper domain. The second point follows.40 ⇤

Our characterization of the equilibrium frontier B can now be stated.

Theorem 2 (Equilibrium Frontier). DelegationIsCool

Let B := BE⇤ and v̄ := max dom(B).

1. v̄ � !, and B(v) = 0 for v 2 [0,!].

39The relationship is as shown if Ť0B(v) < 1. Otherwise, T f B(v) = T0B(v) = 1.
40Because wherever ŤiB(v) � Ť jB(v), we have TiB(v) � T jB(v) as well.
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2. If v̄ > !, then

B(v) = T0B(v) for v 2
h

!, �v̄ + (✓E � ✓)
i

;

B(v) is affine in v for v 2
h

�v̄ + (✓E � ✓), v̄
i

;

B(v̄) = T1B(v̄).

3. If v̄ > !, then ⇡(v̄, B(v̄)) = 0.

Proof. The first point follows directly from Theorem 1. Now suppose v̄ > !.
Let v := �v̄ + (✓E � ✓). Any v > v has v�[✓E�✓]

� >
v�[✓E�✓]
� = v̄, so that B

⇣ v�[✓E�✓]
�

⌘

= 1, and
therefore (appealing to Proposition 4) T0B(v) = 1. Therefore, the cutoff defined in Lemma
7 is  v.

Since T0B,T1B are both convex, there exist some v0, v1 2 [!, v̄] such that v0  v1, v,
and:

B(v) = 0 for v 2 [0,!];

B(v) = T0B(v) for v 2 [!, v0] ;

B(v) is affine in v for v 2 [v0, v1] ;

B(v) = T1B(v) for v 2 [v1, v̄] .

Let m > 0 denote the left-sided derivative of B at v1 (which is simply the slope of B on
(v0, v1) if v0 , v1).

Let [v0, v1] be maximal (w.r.t. set inclusion) such that the above decomposition is still
correct.

Notice then that v1 = v̄. Indeed:

• If v1�✓E
� � v0, then (appealing to Proposition 4) the right-side derivative T1B0 = m

in some neighborhood of v1 in [v1, v̄]. By convexity of B, this would imply B(v) =
T1B(v) = B(v1)+m(v� v1) in said neighborhood. Then, by maximality of v1, it must
be that v1 = v̄.

• If v1�✓E
� < v0, then minimality of v0 implies (again using Proposition 4) that the right-

sided derivative B0(v1) = T B0(v1) < m if v1 < v̄. As B is convex, this can’t happen.
Therefore, v1 = v̄.

Finally, we need to show that v0 = v. Now, by minimality of v0, it must be that for
any v 2 [0, v0), the right-side derivative B0(v) < m. If v0 < v (so that v0�[✓E�✓]

� < v), then
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Proposition 4 gives us

m = B0(v0)

 T0B0(v0)

= hB0
✓v0 � ✓E
�

◆

+ (1 � h)B0
 

v0 � [✓E � ✓]
�

!

= hB0
✓v0 � ✓E
�

◆

+ (1 � h)m

< m,

a contradiction. Therefore v0 = v, and the second point of the theorem follows.
For the last point, assume v̄ > ! and yields strictly positive profits. Then, for sufficiently

small � > 0, the function B� 2 B given by B�(v) =

8

>

>

>

<

>

>

>

:

B(v) if v 2 [0, v̄]

T1B(v) if v 2 [v̄, v̄ + �]
is self-

generating, contradicting the fact that E is the largest self-generating set. ⇤

1.5 The Efficient Frontier: Continuous Time

In this section we proceed to take the limit of the discrete time equilibrium value set frontier.
We consider the limit with (�, h) = (��, h�) := (1��, ⌘�) (and so ✓E = ✓+!�) as the period
length �! 0.

Let B� be the efficient frontier of the equilibrium value set. Given Assumption 2, for
� is sufficiently small (so that the discrete time version of Assumption 2 holds as well),
Theorem 2 applies:

B�(v) = 0 for v 2 [0, !] ;

B�(v) = (1 � �)
"

⌘�B�

 

v̄� � ✓ � �!
1 � �

!

+ (1 � ⌘�)B�
 

v̄� � �!
1 � �

!#

for v 2 [!, (1 � �)v̄� + �!] ;

B�(v) is affine in v for v 2 [(1 � �)v̄� + �!, v̄�] ;

B�(v̄) = (1 � ⌘�) + (1 � �)B�
 

v̄� � ✓ � �!
1 � �

!

.
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Define D�0 and F�0 on B via:

D�0 B :=
1
�

h

B � T�1
�, f T�,0B

i

, and

F�0 B :=
1
�

h

B � T�1
�, f B

i

.

Notice that

�F�0 B(v) = B(v) � ⌘�B(v � ✓E) � (1 � ⌘�)B
⇣

v � [✓E � ✓]
⌘

= B(v) � ⌘�B(v � ✓ � �!) � (1 � ⌘�)B (v � �!)

= ⌘�
h

B(v) � B(v � ✓ � �!)
i

+ (1 � ⌘�) [B(v) � B (v � �!)]

=) F�0 B(v) = ⌘
h

B(v) � B(v � ✓ � �!)
i

+ (1 � ⌘�)
B(v) � B (v � �!)

�
, and

D�0 B(v) =
B(v) � T�1

�, f B(v)

�

=
B(v) � 1

1��B ((1 � �)v)
�

=
1

1 � �

"

B(v) � B(v � �v)
�

� B(v)
#

,

=) F�0 B(v) � D�0 B(v) =
 

1
1 � � + ⌘

!

B(v) �
"

⌘B(v � ✓ � �!) +
B(v) � B (v � �!)

(1 � ⌘�)�1�
� B(v) � B(v � �v)

(1 � �)�

#

.

For fixed � > 0, letting B = B�, and taking v 2 [!, v̄�], the LHS is zero. For fixed B, in
the limit as �! 0, the RHS converges to

(1 + ⌘)B(v) � [⌘B(v � ✓) + (v � !)B0(v)].

If v̄ = lim�!0 v̄� and B = lim�!0 B� exist, then

B(v) =

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

0 if v 2 [0,!]
⌘B(v � ✓) + (v � !)B0(v)

1 + ⌘
if v 2 (!, v̄)

1 + B(v � ✓) if v = v̄ > !,

v̄ = max dom(B)

⇡ (v̄, B(v̄)) = 0.
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Summarizing, there is some v̄ � ! such that:

• The highest revenue attainable in equilibrium is v̄.

• An optimal way to provide revenues v 2 [0,!] in equilibrium is with shutdown of
duration log !v followed by the Aligned Optimal Budget.

• If v̄ > !, then

– The optimal way to provide revenue v 2 (!, v̄) in equilibrium is delegation
with picky project adoption, jumping to continuation revenue v� ✓ following a
project, and revenue drifting according to v̇ = v�! conditional on no projects.

– The only way to provide revenue v̄ in equilibrium is with an immediate bad
project followed by providing revenue v̄ � ✓.

– The optimal equilibrium profit from providing v̄ is zero.

2 APPENDIX: Expiring Budget

Consider the cyclic contract with fiscal year of length T 2 (0,1). Rather than working with
T as our parameter, it is convenient to work with the transformed variable

z =
1

X

k=0

e�kT =
1

1 � e�T > 1, so that e�T =
z � 1

z
.

The expected discounted number of bad/good projects are

b(z) = ze�T e�⌘T = (z � 1)
 

z � 1
z

!⌘

, and

g(z) = z
Z T

0
e�t⌘e�⌘t dt =

z⌘
1 + ⌘

[1 � e(1+⌘)T ]

=
⌘

1 + ⌘
(z � b).

Which z > 1 maximizes P’s profit? Letting ⇢ := ✓̄�c
c�✓ > 0, profit is proportional to

⇢g � b =
⇢⌘

1 + ⌘
(z � b) � b / ⇢⌘

⇢⌘ + 1 + ⌘
z � b.
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It is straightforward to show that profit is uniquely41 maximized at z⇤ = z(⌘), the unique
value z⇤ > 1 with42

b0(z⇤) =
⇢⌘

⇢⌘ + 1 + ⌘
.

How high is the profit, as a fraction of first-best profit? Some algebra shows that

profit from optimal Expiring Budget contract
first-best profit

=
⇢g � b
⇢⌘ � 0

=
1

1 + `,

where `(⌘) := ⌘
z(⌘) . Then,

 

1 +
�`
⌘

!⌘

(1 + `) = b0(⌘) =
⇢⌘

⇢⌘ + 1 + ⌘
⌘�!1�����! ⇢

⇢ + 1
=
✓̄ � c
✓̄ � ✓ .

Therefore, `⇤ := lim⌘!1 `(⌘) exists and is the unique positive number satisfying e�`
⇤(1 +

`⇤) =
✓̄ � c
✓̄ � ✓ . In particular `⇤ > 0 (and so 1

1+`⇤ < 1) so that, even as the players become

arbitrarily patient, the Expiring Budget contract cannot approximate efficiency. For some
parameter values, the best Expiring Budget contract outperforms the aligned optimum. In-
deed, for any ↵, � 2 (0, 1), there are parameter values43 ✓̄ > c > ✓ > 0 such that ✓̄�✓

✓̄
= ↵ and

1
1+`⇤ = �.

3 APPENDIX: Delayed Differential Equation

Taking a change of variables, from agent value v to account balance x = v�!
✓ , the following

system of equations describes the frontier of the equilibrium value set.

41Uniqueness is guaranteed by the convexity of b, together with a simple analysis of the limiting
cases.

42The given z⇤ describes an equilibrium if and only if the principal has nonnegative continuation
profit at the end of a project cycle. Given the below work comparing profit to first-best profit, this
condition holds when ⌘ is sufficiently high.

43For instance, take ✓̄ = 1, ✓ = 1 � ↵, and c = 1 � ↵� e�
1��
� .

60



(1 + ⌘)b(x) = ⌘b(x � 1) + xb0(x) for x > 0

b(x) = 0 for x  0

Theorem 4. Consider the above system of equations. For any ↵ 2 R, there is a unique

solution b(↵) to the above system with b(↵)(1) = ↵. Moreover b(↵) = ↵b(1).

Letting b = b(1):

1. b(x) = x1+⌘ for x 2 [0, 1].

2. b is twice-differentiable on (0,1) and globally C1 on R.

3. b is strictly convex on (0,1) and globally convex on R. In particular, b is unbounded.

4. b is strictly increasing and strictly log-concave on (0,1).

Proof. First consider the same equation on a smaller domain,

(1 + ⌘)b(x) = xb0(x) for x 2 (0, 1].

As is standard, the full family of solutions is {b(↵,1)}↵2R. where b(↵,1)(x) = ↵x1+⌘ for x 2
(0, 1].

Now, given a particular partial solution b : (�1, z] ! R up to z > 0, there is a unique
solution to the first-order linear differential equation b̂ : [z, z + 1]! R given by

b̂0(x) =
1 + ⌘

x
b̂(x) � ⌘

x
b(x � 1).

Proceeding recursively, there is a unique solution to the given system of equations for each
↵. Moreover, since multiplying any solution by a constant yields another solution, unique-
ness implies b(↵) = ↵b(1). Now let b := b(1).

We have shown that b(x) = x1+⌘ for x 2 [0, 1], from which it follows readily that b is
C1+b⌘c on (�1, 1),
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Given x > 0, for small ✏,

(x + ✏)
b0(x + ✏) � b0(x)

✏
=

1
✏

(x + ✏)b0(x + ✏) � 1
✏

xb0(x) � b0(x)

=
1
✏



(1 + ⌘)b(x + ✏) � ⌘b(x + ✏ � 1)
�

� 1
✏



(1 + ⌘)b(x) � ⌘b(x � 1)
�

� b0(x)

= ⌘

"

b(x + ✏) � b(x)
✏

� b(x � 1 + ✏) � b(x � 1)
✏

#

+

"

b(x + ✏) � b(x)
✏

� b0(x)
#

✏!0���! ⌘[b0(x) � b0(x � 1)] + 0.

So b is twice differentiable at x > 0 with b00(x) =
⌘

x
[b0(x) � b0(x � 1)].

Let x̄ := sup{x > 0 : b0|(0,x] is strictly increasing}. We know x̄ � 1, from our explicit
solution of b up to 1. If x̄ is finite, then b0(x̄) > b0(x̄ � 1). But then b00(x̄) = ⌘

x [b0(x) �
b0(x � 1)] > 0, so that b0 is strictly increasing in some neighborhood of x̄, contradicting the
maximality of x̄. So x̄ = 1, and our convexity result obtains. From that and b0(0) = 0, it is
immediate that b is strictly increasing on (0,1).

Lastly, let f := log b|(0,1). Then f (x) = (1 + ⌘) log x for x 2 (0, 1], and for x 2 (1,1),

(1 + ⌘)e f (x) = ⌘e f (x�1) + xe f (x) f 0(x),

=) (1 + ⌘) = ⌘e f (x�1)� f (x) + x f 0(x).

=) 0 = ⌘e f (x�1)� f (x)[ f 0(x � 1) � f 0(x)] + f 0(x) + f 00(x)

=) � f 00(x) = ⌘e f (x�1)� f (x)[ f 0(x � 1) � f 0(x)] + f 0(x)

� ⌘e f (x�1)� f (x)[ f 0(x � 1) � f 0(x)], since f = log b is increasing.

The same contagion argument will work again. If f has been strictly concave so far, then
f 0(x) < f 0(x � 1), in which case � f 00(x) > 0 and f will continue to be concave. Since we
know f |(0,1] is strictly concave, it follows that f is globally such. ⇤

The first point of the following proposition shows that the economically intuitive bound-
ary condition of our DDE uniquely pins down the solution b for any given account cap. The
second point shows that as the account cap increases, so does the number of bad projects
(in expected discounted terms) anticipated at the cap.

Proposition 5. For any x̄ > 0

1. There is a unique ↵ = ↵(x̄) > 0 such that b(↵)(x̄) = 1 + b(↵)(x̄ � 1).

2. b↵(x̄)(x̄) is increasing in x̄.
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Proof. The first part is immediate, with ↵ =
1

b(1)(x̄) � b(1)(x̄ � 1)
.

For the second part, notice that
b(x̄)

b(x̄ � 1)
is decreasing in x̄ because b is log-concave.

Then,
b↵(x̄)(x̄) = ↵(x̄)b(x̄) =

b(x̄)
b(x̄) � b(x̄ � 1)

=
1

1 � b(x̄�1)
b(x̄)

is increasing in x̄. ⇤

4 APPENDIX: Comparative Statics

In this section, we prove Proposition 3.
For any parameters ⌘, ✓̄, ✓, c satisfying Assumptions 1 and 2, and for any balance and

bad projects x, b satisfying x � b > 0, define the associated profit

⇡̂(x, b|⌘, ✓̄, ✓, c) := ⌘(✓̄ � ✓) + ✓x � c
"

⌘(✓̄ � ✓) + ✓x � ✓b
✓̄

+ b
#

=
✓

1 � c
✓̄

◆

[⌘(✓̄ � ✓) + ✓x] � c
 

1 � ✓
✓̄

!

b

= (✓̄ � c)⌘ +
✓

1 � c
✓̄

◆

✓(x � ⌘) � c
 

1 � ✓
✓̄

!

b.

For reference, we compute the following derivatives of profit:

@⇡̂

@✓̄
= ⌘ � c✓

�1
✓̄2

[x � b � ⌘] =
 

1 � c✓
✓̄2

!

⌘ +
c✓
✓̄2

(x � b) > 0.

@⇡̂

@✓
=

✓

1 � c
✓̄

◆

(x � ⌘) + c
1
✓̄

b, which implies

(✓̄ � ✓)@⇡̂
@✓
+ ⇡̂ = (✓̄ � c)⌘ +

✓

1 � c
✓̄

◆

✓̄(x � ⌘) � 0b = (✓̄ � c)x > 0.

@⇡̂

@c
= �1

✓̄

h

⌘(✓̄ � ✓) + ✓x + (✓̄ � ✓)b
i

< 0.

Fix parameters (✓̄, ✓, c), and let x̄⇤ be as delivered in Theorem 2. We first show that
slightly raising either of ✓̄, ✓ or slightly lowering c weakly raises the cap, strictly if x̄⇤ > 0.

• If x̄⇤ = 0, there is nothing to show, so assume x̄⇤ > 0 henceforth. Notice that the
expected discounted number of bad projects when at the cap depends only on ⌘ and
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the size of the cap. By Theorem 2, ⇡̂(x̄⇤, b|⌘, ✓̄, ✓, c) = 0.

• Consider slightly raising ✓̄ or ✓, or slightly lowering c. By the above derivative
computations, the profit of the DCB contract with cap x̄⇤ is strictly positive.

• For any of the above considered changes, the DCB contract with cap x̄⇤ has strictly
positive profits. Appealing to continuity, a slightly higher cap still yields positive
profits under the new parameters, and is therefore consistent with equilibrium by
Proposition 2. Then, appealing to Theorem 2 again, the cap associated with the new
parameters is strictly higher than x̄⇤.

Now we consider comparative statics in the profit-maximizing initial account balance.
We will fix parameters (✓̄, ✓, c), and consider raising either of ✓̄, ✓ or lowering c.

• Again, if x̄⇤ = 0 at the original parameters, there’s nothing to check, so assume
x̄⇤ > 0.

• Let b̌ be some solution to the DDE in Section 3, so that the expected discounted

number of bad projects at a given cap x̄ and balance x is b(x|x̄) =
b̌(x)

b̌(x̄) � b̌(x̄ � 1)
.

Because b̌ is strictly increasing and strictly convex (by work in Section 3), we know
that @@x b(x|x̄) is strictly decreasing in x̄. Therefore, by our comparative statics result
for the cap, the parameter change results in a global strict decrease of @@x b(x|x̄⇤).

• By the form of ⇡̂ and by convexity of b(·|x̄), the unique optimal initial balance is the
balance at which @

@x b(x|x̄) is equal to

⇠ =
✓
⇣

1 � c
✓̄

⌘

c
⇣

1 � ✓
✓̄

⌘

=
✓(✓̄ � c)
c(✓̄ � ✓) ,

which increases with the parameter change.

• As ⇠ increases and @
@x b(x|x̄⇤) decreases (at each x) with the parameter change, the

optimal balance x⇤ must increase (given convexity) to satisfy the first-order condition
@
@x

�

�

�

�

�

x=x⇤
b(x|x̄) = ⇠.
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