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Abstract

We study efficiency in decentralized markets with aggregate uncertainty and one-sided
private information. There is a continuum of mass one of uninformed buyers and a continuum
of mass one of informed sellers. Buyers and sellers are randomly and anonymously matched
in pairs over time, and buyers make the offers. We show that all equilibria become efficient as
trading frictions vanish.
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1 Introduction

Market efficiency is a central concern in economics. In idealized centralized markets, where in-

formation is perfect, the First Welfare Theorem shows that market outcomes are efficient. How-

ever, several relevant markets, including markets for many financial securities, function differently.

First, trade is decentralized: rather than trade taking place at a single price that clears the market,

buyers and sellers privately negotiate the terms of trade. Second, information is asymmetric: agents

have access to different information about important features of the environment. In this paper, we

study a large decentralized market with aggregate uncertainty in which one side of the market

knows the aggregate state but the other side does not, and ask whether the presence of one-sided

private information about the returns from trade is, by itself, an impediment to market efficiency.

The environment we consider is as follows. There is a mass one of buyers and a mass one of

sellers. The payoffs from trade depend on an aggregate state, which only the sellers know. There

is a finite number of such states and gains from trade are nonnegative in all states. Time is discrete

and in every period the buyers and sellers in the market are randomly and anonymously matched in

pairs. In each buyer-seller match, the buyer makes a take-it-or-leave-it offer to the seller, which the

seller either accepts or rejects. If the seller accepts the offer, then trade takes place and the agents

exit the market. Otherwise, the agents remain in the market.

In our environment there are two frictions that can prevent agents from realizing gains from

trade. First, there is the usual trading friction in dynamic matching and bargaining environments,

namely, a real time between two consecutive trading opportunities. Second, and foremost, sellers

have private information about the aggregate state, which they can use to extract more favorable

terms of trade from buyers.

Our main result is that one-sided private information alone is not enough to prevent market

efficiency. We show that as trading frictions vanish, i.e., as the real time between two consecu-

tive trading opportunities converges to zero, welfare in any equilibrium approaches the first best

welfare, which is the welfare one obtains when buyers also know the aggregate state.

There are a number of papers in the dynamic matching and bargaining literature that study how

asymmetric information affects market efficiency. Most consider environments with private values
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(see, e.g., Wolinsky 1988, De Fraja and Sákovics 2001, Serrano 2002, Satterthwaite and Shneyerov

2007, and Lauermann 2013). Moreover, of the few papers on dynamic matching and bargaining

that study environments with common values, see, e.g., Blouin and Serrano (2001), Blouin (2003),

Camargo and Lester (2014), and Moreno and Wooders (2016), only Blouin and Serrano (2001)

considers aggregate uncertainty.

The environment we consider is similar to the environment in Blouin and Serrano (2001),

but with a few important differences. First, we mainly focus on the case of one-sided private

information. We show that this is the only case in which (limit) efficiency is guaranteed. Second,

we allow for any finite number of aggregate states, instead of just two, and place no restrictions

on the payoffs from trade except that gains from trade are nonnegative in every state. Finally, and

crucially, we depart from Blouin and Serrano (2001) in the bargaining protocol. These authors

consider a stylized bargaining game which amounts to restricting the set of prices at which trade

can take place, and show that both in the one-sided and the two-sided private information case the

market outcomes remain inefficient even when discounting vanishes. Our analysis thus shows that

restricting prices can have a critical impact on market efficiency.

Our limit efficiency result contrasts strongly with (limit) inefficiency results in dynamic decen-

tralized markets with adverse selection but no aggregate uncertainty (Blouin 2003, Moreno and

Wooders 2016), and also with inefficiency results in the literature on bargaining with common

value uncertainty, see, e.g., Deneckere and Liang (2006), Hörner and Vieille (2009), and Gerardi,

Hörner, and Maestri (2014). We discuss the reasons for this difference, as well as other aspects of

our analysis, in our concluding remarks.

2 The Environment

Time is discrete and indexed by t ∈ {0, 1, . . .}. There is an equal mass of buyers and sellers,

all with the same discount factor δ ∈ (0, 1). Each seller can produce one unit of an indivisible

good and each buyer wants to consume one unit of the good. The set of (aggregate) states is

Θ = {1, . . . , K} and the probability that the state is k ∈ Θ is πk > 0. The sellers know the state,

but the buyers do not. Agents have quasi-linear preferences. The value to a buyer from consuming
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the good in state k is vk, while the cost to a seller of producing the good in the same state is ck ≥ 0.

We assume nonnegative gains from trade in every state.

Assumption 1. vk − ck ≥ 0 for all k ∈ Θ.

Assumption 1 is fairly weak. In particular, single-crossing of preferences, i.e., vk−ck increasing

in k, is not necessary for our results. Moreover, as we show in the next section, this assumption

cannot be relaxed. Assumption 1 implies that the first best welfare is

W ∗ =
K∑
k=1

πk(vk − ck).

Trade takes place as follows. In each period t ≥ 0, the buyers and sellers in the market

are randomly and anonymously matched in pairs, and the buyer makes a take-it-or-leave-it offer

to the seller. If the seller accepts the offer, then trade occurs and both agents exit the market.

Otherwise, the match is dissolved and the agents remain in the market. In order to ensure existence

of equilibria, we assume that buyers are restricted to make offers in a set P = {p0, p1, . . . , pM},

where pi < pi+1 for all i ∈ {1, . . . ,M}, p0 < mink ck, and pM > maxk ck.1 In what follows, we

let C(P ) = max0∈{1,...,M−1} |pi+1 − pi| be the coarseness of P . Our efficiency result is obtained in

the limit when C(P ) converges to zero, so that the grid of price offers becomes arbitrarily fine.2

We now define strategies and equilibria. Let Ht, with typical element ht, be the set of private

histories for an agent in the market in period t.3 A behavior strategy for a buyer is a sequence

σB = {σBt }, where σBt : Ht → ∆(P ) and σBt (ht) is the (random) price offer that the buyer makes

in period t when his private history is ht. A behavior strategy for a seller is a sequence σS = {σSt },

where σSt : Ht ×Θ× P → [0, 1] and σSt (ht, k, p) is the probability that the seller accepts an offer

1The assumption that p0 < mink ck is natural, as it implies that buyers can make offers that are rejected. The
assumption that buyers can make offers that are greater than the highest cost of production is also natural; otherwise,
it is trivial to generate inefficient equilibria. Notice that a version of Diamond’s Paradox holds in our setting, so in
equilibrium sellers accept any offer greater than maxk ck.

2In the working paper version of our paper we show that if the set P is finite, then even when there is no asymmetry
of information between buyers and sellers there can exist equilibria which remain inefficient as δ converges to one.
Serrano and Yosha (1995) obtain the same result in a stationary version of our environment.

3A private history for an agent in the market in period t is a sequence ht = (p1, . . . , pt−1) of price offers. If the
agent is a buyer, then ht is the sequence of price offers that the agent made and were rejected. If the agent is a seller,
then ht is the sequence of price offers that the agent received and rejected.
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of p in period t when the state is k and his private history is ht. A belief system for a buyer is a

sequence µB = {µBt }, where µBt : Ht → ∆(Θ) and µBt (ht) is the buyer’s (posterior) belief about

the state in period t when his private history is ht. We let σ and µ denote, respectively, a strategy

profile and a profile of belief systems.

We consider pairs (σ, µ) which constitute a sequential equilibrium. This is the natural equi-

librium concept in our environment, as in any sequential equilibrium the payoffs to agents are

well-defined even if there is a zero mass of agents in the market. In particular, the payoff to an

agent is well-defined if aggregate behavior is such that the market clears but the agent behaves in

a such a way that he does not trade.4 The existence of a sequential equilibrium (with a finite set of

possible price offers) follows from a standard argument.5

3 Market Efficiency

In this section we show our main result, namely, that in any equilibrium welfare approaches the

first best welfare as δ converges to one and C(P ) converges to zero.

We begin with some definitions. An outcome for a given seller is a triple (k,T,p), where k ∈

Θ is the state, T ∈ Z+∪{∞} is the time at which trade takes place, and p ∈ P is the price at which

trade takes place; T =∞ corresponds to the event in which trade does not take place. Denote the

set of all possible outcomes by O. For any equilibrium (σ, µ), the probability distribution over the

set of states and the strategy profile σ uniquely determine a probability distribution ξ over O.6 Let

Eξ denote the expectation with respect to ξ. Welfare in the equilibrium (σ, µ) is

W (σ, µ) =
K∑
k=1

πkEξ
[
δT(vk − ck)|k

]
.

Clearly, W (σ, µ) is bounded above by W ∗.

We can now state and prove our main result. For this, let P be the set of all non-empty finite

set P of prices such that minp∈P p < mink ck and maxp∈P p > maxk ck.
4Indeed, first notice that if the pair (σ, µ) is such that σ has full support, then there is a positive mass of agents in

the market in every period, in which case payoffs are well-defined after any history. Now observe that payoffs in a
sequential equilibrium are the limits of payoffs when the pair (σ, µ) is such that σ has full support.

5For completeness, we provide a sketch of the argument in a Supplementary Appendix.
6When T =∞, the transaction price is undetermined. We adopt the convention that p = p0 in this case.
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Theorem 1. Let {δn} be a sequence of discount factors such that limn δn = 1 and {Pn} be a

sequence in P such that limn C(Pn) = 0. For any sequence {(σn, µn)} of equilibria such that

(σn, µn) is an equilibrium when δ = δn and P = Pn, the sequence {W (σn, µn)} converges to W ∗.

Proof. Fix the grid P = {p0, p1, . . . , pM} of price offers with p0 < · · · < pM and the discount

factor δ, and let (σ, µ) be a sequential equilibrium. First notice that even though (σ, µ) need not be

symmetric, all the agents on a given side of the market obtain the same equilibrium payoff. In fact,

since there is a continuum of agents, buyer (seller) i can obtain the same payoff as buyer (seller) j

by mimicking j’s behavior. We write V B for the buyers’ ex-ante (equilibrium) payoff and V k for

the sellers’ payoff in state k. When the state is k, we refer to a seller as a type-k seller and write

V k
t for his payoff in period t. Since there is a continuum of agents and sellers know the state, V k

t

does not depend on the private history of a seller, only on the period t.

The following result establishes some useful properties of the payoffs V k
t . Let z = maxk vk.

Lemma 1. The payoffs V k
t have the following properties:

(i) For every k ∈ Θ and s > t ≥ 0, we have V k
t ≥ δs−tV k

s ;

(ii) For every k ∈ Θ and t ≥ 0, we have V k
t ≤ min{pM − ck, z}.

Proof of Lemma 1. Let s > t ≥ 0. The first part follows immediately from the fact that a strategy

for a seller in period t is to reject all offers between periods t and s − 1, and then follow the

equilibrium behavior starting from period s.

We now prove the second part. Since pM > maxk ck and mink ck ≥ 0, a type-k seller accepts

the offer pM with probability one in equilibrium. Hence, V k
t ≤ pM − ck. Now observe that since

P is finite, there exist p∗ ∈ P and a history ht such that a buyer offers p∗ with positive probability

after ht and no buyer makes an offer greater than p∗ after any other history. Clearly, the seller who

receives the offer p∗ accepts it with probability one. Then p∗ ≤ z, otherwise a buyer who offers p∗

obtains a negative payoff, in which case he would have a profitable deviation. Thus, V k
t ≤ z.

We divide the argument in several steps.

Step 1. First, for each k ∈ Θ we construct an offer p̂k that is feasible, i.e., belongs to P , and is

accepted with probability one by a type-k seller in every period t ∈ {0, . . . , K − 1}. We start with
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the following auxiliary result.

Lemma 2. Consider the equilibrium (σ, µ). For every k ∈ Θ and t ∈ {0, . . . , K − 1}, let

p
k,t

:= min

{
ck +

V k
1

δt−1
, (1− δ)ck + δpM

}
.

If a type-k seller receives an offer p > p
k,t

in period t ∈ {0, . . . , K − 1}, then he accepts it with

probability one.

Proof of Lemma 2. Consider first the case (1− δ)ck + δpM ≤ ck + V k
1 /δ

t−1. If in period t a type-k

seller accepts an offer p > (1 − δ)ck + δpM , then his payoff is strictly larger than δ(pM − ck). If

instead he rejects it, then his payoff is equal to δV k
t+1. The result follows from Lemma 1(ii).

Consider now the case (1−δ)ck+δpM > ck+V k
1 /δ

t−1 and let t ∈ {0, . . . , K−1}. It is strictly

more profitable for a type-k seller to accept an offer p than to reject it if p − ck > δV k
t+1. From

Lemma 1(i) we have V k
1 /δ

t ≥ V k
t+1; notice that V k

1 /δ
t = V k

t+1 when t = 0. So, p > p
k,t

implies

p− ck > p
k,t
− ck =

V k
1

δt−1
= δ

V k
1

δt
≥ δV k

t+1,

which concludes the proof of the lemma.

We now use Lemma 2 to construct the desired prices p̂k. For each k ∈ Θ, let p̂k be the smallest

element of P that is strictly greater than ck + V k
1 /δ

K−2 if pM > ck + V k
1 /δ

K−2 and let p̂k = pM

otherwise. Notice that if pM > ck + V k
1 /δ

K−2, then

p̂k > ck +
V k
1

δK−2
≥ ck +

V k
1

δt−1
(1)

for every t ∈ {0, . . . , K − 1}. On the other hand, if pM ≤ ck + V k
1 /δ

K−2, then

p̂k = pM > (1− δ)ck + δpM (2)

since pM > maxk ck. Lemma 2 and inequalities (1) and (2) imply the following corollary.

Corollary 1. Consider the equilibrium (σ, µ). If a type-k seller receives the feasible offer p = p̂k

in period t ∈ {0, . . . , K − 1}, then he accepts it with probability one.

To finish the first step, we observe that

p̂k ≤
(
ck +

V k
1

δK−2

)
+ C(P ). (3)
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for every k ∈ Θ; recall that C(P ) = maxi∈{0,...,M−1} |pi+1 − pi|. In fact, inequality (3) is trivially

satisfied if pM ≤ ck+V
k
1 /δ

K−2 since, in this case, p̂k = pM . Suppose then that pM > ck+V
k
1 /δ

K−2

and let p̃k be the greatest element in P that is strictly smaller than p̂k; notice that p̃k is well defined

since p0 < mink ck. It follows from the definition of p̂k that p̃k ≤ ck + V k
1 /δ

K−2. Thus,

C(P ) ≥ p̂k − p̃k ≥ p̂k − ck −
V k
1

δK−2
,

which is the desired result.

Reordering the States. Now reorder the states so that p̂k is (weakly) increasing in k. Since we have

not imposed any order on the set Θ of states, this is without loss of generality.

Step 2. As our second step, we use Corollary 1 to derive a lower bound to the buyer’s equilibrium

payoff V B. To do this, we propose a strategy σ̂B for the buyer and compute a lower bound to his

payoff when he plays σ̂B and all other players follow the equilibrium strategy.

The strategy σ̂B prescribes to offer p̂t+1 in period t ∈ {0, . . . , K − 1} and offer p̂K in every

period t ≥ K. Let u
(
σ̂B; (σ, µ)

)
denote the buyer’s ex-ante payoff when he follows the strategy

σ̂B and all other players follow the equilibrium strategy. It follows from Corollary 1 that if a buyer

plays σ̂B and the state is k, then he purchases the good with probability one in period t ≤ k − 1.

Thus, given that p̂k is increasing in k and vk ≥ 0 for all k, the payoff to a buyer from playing σ̂B is

at least δk−1vk − p̂k in state k, so that

u
(
σ̂B; (σ, µ)

)
≥

K∑
k=1

πk
(
δk−1vk − p̂k

)
. (4)

In equilibrium, σ̂B cannot be a profitable deviation for a buyer, and so V B ≥ u
(
σ̂B; (σ, µ)

)
.

From inequalities (3) and (4), we then obtain

V B ≥
K∑
k=1

πk

(
δk−1vk − ck −

V k
1

δK−2
− C(P )

)

=
K∑
k=1

πk

[
(vk − ck)− δV k

1 −
(
1− δk−1

)
vk −

V k
1

(
1− δK−1

)
δK−2

− C(P )

]
.

From the last inequality and Lemma 1(ii) we can then conclude that

V B ≥
K∑
k=1

πk

[
(vk − ck)− δV k

1 −
(
1− δk−1

)
vk −

z
(
1− δK−1

)
δK−2

− C(P )

]
. (5)
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Step 3. We can now conclude the proof. Since preferences are quasi-linear, welfare is the sum of

the buyers’ and sellers’ ex-ante equilibrium payoffs:

W (σ, µ) = V B +
K∑
k=1

πkV
k.

From Lemma 1(i), we have V k = V k
0 ≥ δV k

1 for every k ∈ Θ. This and inequality (5) imply

W (σ, µ) ≥ V B +
K∑
k=1

πkδV
k
1

≥
K∑
k=1

πk(vk − ck)−
K∑
k=1

πk

[(
1− δk−1

)
vk +

z
(
1− δK−1

)
δK−2

+ C(P )

]

= W ∗ −
K∑
k=1

πk

[(
1− δk−1

)
vk +

z
(
1− δK−1

)
δK−2

+ C(P )

]
.

Consequently W (σ, µ) converges to W ∗ as δ → 1 and C(P )→ 0, which is the desired result.

4 Final Remarks

We conclude our analysis with several remarks. First, we show that the assumption of nonnegative

gains from trade cannot be relaxed. Then, we discuss the robustness of our efficiency result to

alternative bargaining protocols and to the presence of uninformed sellers. After that, we discuss

our assumption of restricted price offers and how we can relax it. We also discuss the role of

random matching and aggregate uncertainty in our efficiency result. Finally, we briefly discuss

information aggregation.

Gains From Trade. Theorem 1 shows that the assumption of nonnegative gains from trade in

every state is sufficient for all equilibria to become efficient as trading frictions disappear. The

example below shows that this assumption is also necessary for limit efficiency.

Suppose that K = 2 and v1 < c1 < c2 < v2, so that gains from trade are negative in k = 1. In

this case, the first best welfare is W ∗ = π2(v2 − c2). Take a sequence {δn} of discount factors that

converges to one and, for each n ∈ N, let (σn, µn) be a sequential equilibrium when the agents’

discount factor is δn. Let Wn be welfare in (σn, µn) and assume towards a contradiction that Wn
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converges to W ∗. By assumption, limn Eξn
[
δTn |k = 1

]
= 0 and limn Eξn

[
δTn |k = 2

]
= 1, where

ξn is the probability distribution over the set of outcomes induced by σn (and the distribution over

the set of states) and T is the (random) time at which trade occurs. In particular, the expected

payoff of the sellers when k = 1 converges to zero. Now let Q be the first (random) period in

which a buyer makes an offer at least as large as c2. Then limn Eξn
[
δQn |k = 2

]
= 1. However,

it is easy to show that limn Eξn
[
δTn |k = 1

]
= 0 and limEξn

[
δQn |k = 2

]
= 1 together imply that

limn Eξn
[
δQn |k = 1

]
= 1. So, a seller in state 1 can secure a limit payoff of at least (c2 − c1) > 0

by following the strategy in which he accepts an offer if, and only if, the offer is c2 or more, a

contradiction.

Bargaining Protocol and Uninformed Sellers. It is possible to extend Theorem 1 to the case

in which in every buyer-seller meeting the buyer makes a take-it-or-leave-it offer to the seller with

positive probability and the seller makes a take-it-or-leave-it offer to the buyer with the remaining

probability. A sketch of the proof—which is similar to the proof of Theorem 1—is as follows. A

lower bound to a buyer’s payoff in any equilibrium is obtained when the buyer: (i) rejects any offer

that he receives from a seller; and (ii) offers the lowest price in P that is greater than the seller’s

reservation price when the state is k in the kth period in which the buyer gets to make an offer.

As trading frictions vanish, this lower bound converges to the first best welfare net of the sellers’

ex-ante payoff, which establishes the desired result.

Theorem 1 is not true when sellers have all the bargaining power, though. Not surprisingly,

signalling opens up the possibility of equilibria which remain inefficient even as trading frictions

vanish. Likewise, Theorem 1 is also not true when some sellers are uninformed about the aggregate

state. Again, it is possible to construct inefficient equilibria in which signalling sustains inefficient

outcomes: a buyer who deviates by making an offer to attract an uninformed seller changes the

uninformed seller’s belief in a way that precludes trade.

Limited Price Offers. We assume that buyers are restricted to make offers in a finite set P and

consider the limiting case in which P becomes arbitrarily fine. The existence of perfect Bayesian

equilibria cannot be guaranteed in our environment when there is a continuum of possible price
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offers for buyers. We can work with unrestricted price offers by changing our environment so that

now in every period the agents in the market are matched with probability λ ∈ (0, 1). In the Ap-

pendix we show constructively that in this alternative environment a perfect Bayesian equilibrium

with unrestricted price offers exists as long as agents are patient enough. We also show that welfare

in any perfect Bayesian equilibrium with unrestricted price offers approaches the first-best welfare

as trading frictions vanish.

The Role of Aggregate Uncertainty and Random Matching. We depart from most of the lit-

erature that studies trading in dynamic decentralized markets with common value uncertainty by

assuming that there is aggregate uncertainty. In trading environments with common value uncer-

tainty but no aggregate uncertainty, such as Camargo and Lester (2014) and Moreno and Wooders

(2016), multiple types of seller co-exist in the market. As is well-known, the incentive that sellers

with low valuation have to mimic the behavior of sellers with high valuation ensures that equilibria

remain inefficient even as trading frictions vanish.7 In our environment, a single type of seller is

present in the market at any point in time. As such, when the price grid is arbitrarily fine, an option

for a buyer is to offer the reservation prices of the different types of sellers in ascending order, thus

extracting the residual surplus from sellers in a finite number of periods regardless of the aggregate

state. In the limit as δ converges to one, the inefficiency resulting from this strategy converges to

zero. Since the buyer’s payoff in any equilibrium is bounded below by the payoff they obtain using

the strategy described above, all equilibria become efficient as trading frictions vanish.

Some of the driving-forces present in our model with a continuum of agents are also not present

in models in which a single seller dynamically meets a with a sequence of short-run buyers (as in

Hörner and Vieille 2009), or the same buyer (as in Deneckere and Liang 2006 and Gerardi, Hörner,

and Maestri 2014). The main difference between our model and the aforementioned ones is that in

our environment a single trader cannot influence the aggregate dynamics of the economy. On the

other hand, when there is a single seller in the market, his behavior can affect the future behavior

of buyers. In this case, the only way to provide incentives for a low-valuation seller to trade at a

low price is to have delay in trade with a high-valuation seller.

7A reduction in delay costs reduces the cost for the former type of seller to imitate the latter type of seller.
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Information Aggregation. A question that has attracted a lot of attention in the literature is

whether markets fully aggregate the information dispersed among agents.8 In our context, infor-

mation aggregation is not necessarily achieved. In particular, it is easy to construct examples of

(pooling) equilibria which are efficient but fail to aggregate information perfectly.

Appendix

We make two modifications in the benchmark model in this appendix. First, we assume that in

every period a buyer and a seller are matched with probability λ ∈ (0, 1). Second, we assume that

the set of possible price offers is unrestricted, i.e., equal to R.

We consider pairs (σ, µ), where σ is a strategy profile and µ is a profile of belief systems

for buyers, that constitute a perfect Bayesian equilibrium. We first show that a perfect Bayesian

equilibrium exists if agents are patient enough. We then show that all perfect Bayesian equilibria

become efficient as discounting vanishes. As before, we refer to a seller in state k as a type-k seller.

Theorem 2. There exits δ∗ ∈ (0, 1) such that for all δ > δ∗ a perfect Bayesian equilibrium exists.

Proof. Without loss of generality, order the set of states in such a way that ck is increasing in k

and let C = {c ∈ R+ : c = ck for some k ∈ Θ}. Then C = {c1, . . . , cL} with c1 < · · · < cL and

L ≤ K; notice that L = K when the costs c1 to cK are distinct. Now let f : C ⇒ Θ be the

correspondence such that f(c`) = {k ∈ Θ : ck = c`}.

Consider the pair (σ, µ) in which sellers follow the same strategy σS and buyers follow the same

strategy σB and have the same belief system µB, where σS , σB, and µB are defined as follows:

i) Sellers’ strategy σS: A type-k seller in a match accepts an offer p if, and only if, p ≥ ck.

ii) Buyers’ strategy σB: For any history ht for a buyer, let: (i) m(ht) ∈ N+ be the number of times

the buyer was matched in the market so far; (ii) p(ht) be the largest offer the buyer made so far,

8The seminal reference in the literature on information aggregation in decentralized markets is Wolinsky (1990).
Serrano and Yosha (1993) shows that Wolinsky’s negative result depends on the assumption of two-sided incomplete
information. Blouin and Serrano (2001) extends the analysis in Wolinsky (1990) to non-stationary environments. More
recent papers in this literature are Golosov, Lorenzoni, and Tsyvinski (2014) and Lauermann and Wolinsky (2016).
None of these papers are concerned with market efficiency.
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with the convention that p(ht) = −∞ if m(ht) = 0; and (iii) C(p(ht)) = {c ∈ C : c > p(ht)}.9

Notice that C(p(ht)) = C if m(ht) = 0. A buyer’s behavior after a history ht is as follows.

If C(p(ht)) 6= ∅, then the buyer offers the smallest element of C(p(ht)) if he is matched in the

market. If, instead, C(p(ht)) = ∅, then the buyer offers cL if he is matched in the market. The

strategy σB is such that on the path of play, for each k ∈ {1, . . . , L}, a buyer offers ck the kth time

that he is matched in the market.

iii) Buyers’ belief system µB: If m(ht) = 0, then µ(ht) assigns probability πk to state k ∈ Θ. Now

suppose that m(ht) > 0. If C(p(ht)) 6= ∅, then C(p(ht)) = {cj, . . . , cL} for some j ∈ {1, . . . , L}.

In this case, µ(ht) assigns probability 0 to every state k ∈
⋃j−1
s=1 f(cs) and assigns probability

πk∑
`∈

⋃L
s=j f(cs)

π`

to every other state. On the other hand, if C(p(ht)) = ∅, then µ(ht) assigns probability 0 to every

state k ∈
⋃L−1
s=1 f(cs) and assigns probability

πk∑
`∈f(cL) π`

to every other state.

It is straightforward to check that σS is sequentially rational and that µ is consistent with Bayes’

rule on the path of play. Therefore, it suffices to show that σB is sequentially rational to conclude

the proof. Consider a buyer with history ht and notice that there exists j ∈ {1, . . . , L} such that

µ(ht) assigns probability

π̃k =
πk∑

`∈
⋃L

s=j f(ck)
π`

to every state k ∈
⋃L
k=j f(ck) and assigns probability 0 to every other state. If j = L, then the

buyer does not have a profitable deviation as he believes that k ∈ f(cL) and expects that any seller

accepts an offer of cL.

Suppose then that j < L and let τ ≥ L− 1 be the random time at which the buyer is matched

for the Lth time in the market. If the buyer follows the equilibrium strategy, then his expected
9Now a history for a buyer in period t ≥ 1 is a sequence (p̃1, . . . , p̃t−1), where p̃s = ∅ means that the buyer was

not matched in period s ∈ {1, . . . , t − 1} and p̃s ∈ R means that the buyer was matched in period s and his offer p̃s
was rejected. A history for a seller in period t is defined similarly.
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payoff is bounded below by

uj =
∑

`∈
⋃L

k=j f(ck)
E[δτ−1]π̃`(v` − c`).

Clearly, the most profitable deviation for the buyer consists in offering a price ck ∈ {cj+1, . . . , cL}

to trade earlier. The payoff from this deviation is bounded above by

u′j =
∑

`∈
⋃L

k=j f(ck)
π̃`(v` − c`)− E[δτ−1](cj+1 − cj)

∑
`∈f(cj) π̃`,

where we used the fact that with probability at least
∑

`∈f(cj) π̃` there is a state in which the buyer

purchases the good at a price at least (cj+1 − cj) > 0 greater than cj . Since limδ→1 E[δτ−1] = 1 by

the dominated convergence theorem, there exists δj ∈ (0, 1) such that δ > δj implies that uj > u′j .

Letting δ∗ = max{δ1, . . . , δL−1}, we can conclude that σB is sequentially rational whenever

δ > δ∗. It then follows that for all δ > δ∗, the pair (σ, µ) is a perfect Bayesian equilibrium.

Theorem 3. Let {δn} be a sequence of discount factors converging to one. For any sequence

{(σn, µn)} of equilibria such that (σn, µn) is an equilibrium when δ = δn the sequence {W (σn, µn)}

converges to the first-best welfare W ∗.

Proof. We show that for all ε ∈ (0, z) there exists δ ∈ (0, 1) such that if δ > δ, then W (σ, µ) >

W ∗−ε for every pair (σ, µ) that is a perfect Bayesian equilibrium when the agents’ discount factor

is δ; recall that z = maxk vk.

Fix ε ∈ (0, z) and let (σ, µ) be a perfect Bayesian equilibrium for some discount factor δ. As

in the main text, in equilibrium the payoffs to buyers are the same and the payoffs to sellers in

each state are the same. Let V B denote the buyers’ ex-ante (equilibrium) payoff and V k denote

the type-k sellers’ payoff. Also, let V k
t denote a type-k seller’s payoff in period t, which does not

depend on a seller’s private history. Lemma 1 is still valid and its proof is the same as before.

Step 1. We proceed as in the proof of Theorem 1 and first identify for each k ∈ Θ a set of offers

that, in equilibrium, a type-k seller accepts with probability one. Let κ = ε/16z > 0 and define

T (κ) as the smallest positive integer such that (1− λ)T (κ) < κ.

Lemma 3. Consider the equilibrium (σ, µ). For every k ∈ Θ and t ∈ {0, . . . , T (κ)K − 1}, let

p
k,t

= ck +
V k
1

δt−1
.
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If a type-k seller receives an offer p > p
k,t

in period t ∈ {0, . . . , T (κ)K − 1}, then he accepts it

with probability one.

The proof of Lemma 3 is identical to the proof of Lemma 2 and is, therefore, omitted. It follows

from Lemma 3 that if a buyer offers

p̂k = ck +
V k
1

δT (κ)K−2
+
ε

4

in any period t ∈ {0, . . . , T (κ)K − 1}, then a type-k seller accepts this offer with probability one.

Reordering the States. Next, we reorder the states so that p̂k is (weakly) increasing in k. Since we

have not imposed any order on the states, this is without loss of generality.

Step 2. We now use Lemma 3 to derive a lower bound to the buyers’ equilibrium payoff. Consider

a buyer who follows the strategy σ̂B that prescribes him to offer p̂k if he is matched in periods t ∈

{T (κ)(k − 1), . . . , T (κ)k − 1}, with k ∈ Θ, and offer p̂K if he his matched in period t ≥ T (κ)K.

Denote by u
(
σ̂B; (σ, µ)

)
the payoff the buyer obtains when all other agents follow the equilibrium

strategy. Notice that V B ≥ u
(
σ̂B; (σ, µ)

)
, otherwise the buyer would have a profitable deviation.

We obtain a lower bound for u
(
σ̂B; (σ, µ)

)
, and thus V B, as follows. Suppose that the state

is k. There are two mutually exclusive and exhaustive events to consider: the buyer transacts in

period t < T (κ)(k − 1) or the buyer is still in the market in period T (κ)(k − 1). In the first event,

which is only possible if k > 1, the buyer’s expected payoff is at least δT (κ)k−1vk − p̂k; this is

because p̂k is increasing in k and vk ≥ 0. Consider now the second event. Either the buyer is

matched with a seller in some period t ∈ {T (κ)(k − 1), . . . , T (κ)k − 1} and obtains a payoff of at

least δT (κ)k−1vk− p̂k, or the buyer is not matched with a seller in any of these periods and obtains a

payoff of a least −p̂K . Since (1− λ)T (κ) < κ, the probability that the buyer does not meet a seller

in some period t ∈ {T (κ)(k − 1), . . . , T (κ)k − 1} is at most κ. So, the buyer’s expected payoff

in the second event is at least (1− κ)
(
δT (κ)k−1vk − p̂k

)
− κp̂K . Given that the lower bound to the

buyers’ expected payoff is lower in the second event, we then have that

u
(
σ̂B; (σ, µ)

)
≥ (1− κ)

K∑
k=1

πk
(
δT (κ)k−1vk − p̂k

)
− κp̂K

≥ (1− κ)
K∑
k=1

πk
(
δT (κ)K−1vk − p̂k

)
− κp̂K .
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Now observe that maxk
{
ck, V

k
1

}
≤ z and ε ∈ (0, z) implies that

κp̂K ≤ κ

(
ck + V K

1 + ε+

(
1− δT (κ)K−2

)
V K
1

δT (κ)K−2

)
≤ 3κz + z

(
1− δT (κ)K−2

δT (κ)K−2

)
. (6)

Moreover, we also have that

(1− κ)
K∑
k=1

πk
(
δT (κ)K−1vk − p̂k

)
= (1− κ)

K∑
k=1

πk

(
δT (κ)K−1vk − ck −

δV k
1

δT (κ)K−1
− ε

4

)

= (1− κ)

[
K∑
k=1

πk(vk − ck)−
(
1− δT (κ)K−1

) K∑
k=1

πkvk −
ε

4
−

K∑
k=1

πk
δV k

1

δT (κ)K−1

]

≥
K∑
k=1

πk(vk − ck)− κ
K∑
k=1

πkvk −
(
1− δT (κ)K−1

) K∑
k=1

πkvk −
ε

4
−

K∑
k=1

πk
δV k

1

δT (κ)K−1

≥
K∑
k=1

πk(vk − ck)− κz −
(
1− δT (κ)K−1

)
z − ε

4
− z

(
1− δT (κ)K−1

δT (κ)K−1

)
−

K∑
k=1

πkδV
k
1 , (7)

where the last inequality follows from the fact that
∑K

k=1 πkvk ≤ z and
∑K

k=1 πkδV
k
1 ≤ z.

Using inequalities (6) and (7) and the facts that κz = ε/16 and (1 − δt)/δt is increasing in t,

we then have that

V B ≥
K∑
k=1

πk(vk − ck)−
K∑
k=1

πkδV
k
1 −

(
1− δT (κ)K−1

)
z − ε

2
− 2z

(
1− δT (κ)K−1

δT (κ)K−1

)
.

Step 3. We conclude by using the above lower bound on V B to obtain a lower bound on welfare.

Since W (σ, µ) = V B +
∑K

k=1 πkV
k and, for all k ∈ Θ, V k = V k

0 ≥ δV k
1 , we have

W (σ, µ) ≥
K∑
k=1

πk(vk − ck)−
(
1− δT (κ)K−1

)
z − ε

2
− 2z

(
1− δT (κ)K−1

δT (κ)K−1

)
.

Taking δ ∈ (0, 1) such that δ > δ implies that

(
1− δT (κ)K−1

)
z + 2z

(
1− δT (κ)K−1

δT (κ)K−1

)
<
ε

2
,

we can then conclude that W (σ, µ) > W ∗ − ε whenever δ > δ, which is the desired result.
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Supplementary Material (Not for Publication):

Here, we sketch the proof that a sequential equilibrum exists in our environment when sellers are

restricted to make offers in a finite set P .

For each n ≥ 1, let Gn be the game in which buyers are restricted to play behavior strategies

assigning probability at least 1/n(M + 1) to each element of P and sellers are restricted to play

behavior strategies assigning probability at least 1/2n to each acceptance decision. Fix n ≥ 1.

Since the action sets of buyers and sellers are finite, a standard argument shows that Gn has a Nash

equilibrium σn. Moreover, since under σn every history in Gn is reached with positive probability,

there exists a belief system µn for buyers such that (σn, µn) is a sequential equilibrium of Gn.

Consider now the sequence {(σn, µn)} of sequential equilibria. Since the set H =
⋃∞
t=1Ht

is countable, a standard argument shows that {(σn, µn)} admits a subsequence {(σnk
, µnk

)} such

that the numerical sequence {(σnk
(h), µnk

(h))} is convergent for all h ∈ H. Assume, without loss,

that {(σn, µn)} itself has this property, and let (σ∞, µ∞) be its pointwise limit. We claim that σ∞

is sequentially rational given µ∞, so that (σ∞, µ∞) is a sequential equilibrium. We only consider

buyers, as the proof for sellers is similar. In what follows, let ΣB
n be the set of strategies for the

buyers in Gn and notice that ΣB
n1
⊇ ΣB

n2
for all n1 > n2.

Fix h ∈ H and consider the continuation game after the history h. Let V B(σB|σ, µ) be the

expected payoff to a buyer who follows the strategy σB after h when aggregate behavior is given

by the strategy profile σ and the belief system for the buyers is µ; we omit the dependence of the

payoff V B(σB|σ, µ) on h for ease of exposition. Suppose, by contradiction, that there exists a

strategy σ̃B for buyers such that

V B(σ̃B|σ∞, µ∞) ≥ V B(σB∞|σ∞, µ∞) + ε (8)

for some ε > 0. Because of discounting, there exists n1 ∈ N and σ̂B ∈ ΣB
n for all n ≥ n1 such that

V B(σ̂B|σ∞, µ∞) ≥ V B(σ̃B|σ∞, µ∞)− ε

4
. (9)

Moreover, by the construction of (σ∞, µ∞), there exists n2 ∈ N such that if n ≥ n2, then

V B(σ̂B|σn, µn) ≥ V B(σ̂B|σ∞, µ∞)− ε

4
(10)
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and

V B(σBn |σn, µn) ≤ V B(σB∞|σ∞, µ∞) +
ε

4
. (11)

Hence, n ≥ max{n1, n2} implies that

V B(σ̂B|σn, µn) ≥ V B(σ̃B|σ∞, µ∞)− ε

2
≥ V B(σB∞|σ∞, µ∞) +

ε

2
> V B(σBn |σn, µn),

where the first inequality follows from (9) and (10), the second inequality follows from (8), and

the third inequality follows from (11). Given that σ̂B ∈ ΣB
n , we can then conclude that σBn is not

sequentially rational for the buyers in Gn, a contradiction.
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