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Abstract
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capital model. We find that (1) the peak of the model Laffer curve occurs at a 52 percent top tax
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Laffer curve and (3) standard empirical methods underestimate the long-run model earnings elasticity

that enters this formula.
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1 Introduction

Diamond and Saez (2011) argue that the revenue maximizing marginal earnings tax rate on

top earners in the U.S. is approximately 73 percent, but calculate that the top rate in 2010 is

roughly 43 percent. They also argue that the top rate that maximizes revenue will approximate

the top rate that maximizes welfare for some welfare measures. Therefore, they propose a 73

percent top tax rate.1

There is a simple formula for the revenue maximizing top tax rate in some static models that

depends on only two inputs: an earnings elasticity for top earners in response to a change in

the top tax rate and a statistic of the upper tail of the earnings distribution. The formula does

not rely on making parametric assumptions on the primitive elements of a specific static model.

Diamond and Saez (2011) employ this formula and estimates of these two inputs to calculate

that 73 percent is the revenue maximizing top rate.

From the perspective of human capital theory, we argue that there are two main problems with

their analysis and that both of these lead to a lower revenue maximizing top rate. First, there

is a theoretical problem: the simple formula is not valid in dynamic models. However, there is

a formula (see Badel and Huggett (2015, Theorem 1)), featuring three elasticities rather than

one elasticity, that applies to static models and to steady states of dynamic models. We show

that accounting for the two additional elasticities in the Badel-Huggett formula reduces the

value of the revenue maximizing top tax rate within a human capital model.

The second problem is that the earnings elasticity estimate that Diamond and Saez employ is

a short-run estimate. It is widely agreed that the long-run elasticity is of greatest interest for

policy making. This is because the central question involves the consequences of a permanent

change in the top tax rate. We show that when one applies standard empirical methods for

estimating the short-run elasticity (e.g. the methods developed by Gruber and Saez (2002))

to data produced by a human capital model, then the estimated short-run elasticity is system-

atically below the true long-run model elasticity that enters the Badel-Huggett formula and

determines the top of the model Laffer curve. This occurs because skills fall after an increase

in the top tax rate but the fall in skills takes a long time to be fully realized. A larger earnings

elasticity implies a smaller revenue maximizing tax rate in either the simple formula or the

Badel-Huggett formula.

We use a human capital model to assess the consequences of increasing the marginal tax rate

on top earners and returning any additional revenue in equal lump-sum transfers. The model

1The top federal tax rate in the US in 2010 was 35 percent. It applies to taxable income levels above $373, 650
for joint filers. The 99th percentile of the U.S. income distribution in 2010 was $365, 026 with capital gains and
$353, 632 without capital gains when stated in 2012 dollars, according to the World Top Incomes Database.
Thus, Diamond and Saez (2010) propose a substantial tax rate increase on roughly the top 1 percent.
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is calibrated to match features of the U.S. age-earnings distribution. The model Laffer curve

relates the value of the top tax rate to the resulting steady-state, lump-sum transfer and holds

government spending constant. The peak of the model Laffer curve occurs at a 52 percent top

tax rate.

We show that the Laffer curve would peak at a 66 percent top tax rate absent skill change in

response to an increase in the top tax rate. Thus, the endogenous fall in skill in response to an

increase in the top rate is quantitatively very important within the model. Why do skills fall in

the steady state associated with the higher top tax rate? The key mechanism is that a higher

top rate reduces the marginal benefits of skill investment received later in life without changing

the marginal cost of skill investment earlier in life. For this mechanism to work it is key that

top earners typically become top earners late in life. There is strong support for this in U.S.

data: males with high lifetime earnings have on average a very steep mean earnings profile.

The paper is organized as follows. Section 2 presents the model framework. Section 3 documents

properties of the U.S. age-earnings distribution. Section 4 and 5 set model parameters and

describe model properties. Section 6 assesses the consequences of increasing the marginal tax

rate on top earners and examines all the relevant elasticities in the Badel-Huggett formula

within the human capital model. Section 7 concludes.

2 Framework

The model that we employ is closest to the human capital model developed by Huggett, Ventura

and Yaron (2011).2

Decision Problem In Problem P1 an agent maximizes expected utility which is determined

by consumption c = (c1, ..., cJ), work time decisions l = (l1, .., lJ) and learning time decisions

s = (s1, ..., sJ). Consumption cj, work time lj and learning time sj decisions at age j are func-

tions of initial conditions x = (h1, a) ∈ X and shock histories zj = (z1, ..., zj). An agent enters

the model with initial skill level h1 and an immutable learning ability level a. Idiosyncratic

shocks zj+1 impact an agent’s skill level.

2Heckman, Lochner and Taber (1998), Erosa and Koreshkova (2007) and Guvenen, Kuruscu and Ozkan
(2014) analyze implications of varying income tax progression using a human capital model. Unlike our paper,
none of these papers focus on tax reforms directed at the extreme upper tail. Altig and Carlstrom (1999) Guner,
Lopez-Daneri and Ventura (2014) and Kindermann and Krueger (2014) analyze tax reforms that are directed at
the upper tail of the income distribution. A key difference from our work is that they do not employ a human
capital framework and thus do not allow labor productivity or skill to respond to a tax reform.
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Problem P1: maxE[
∑J

j=1 β
j−1uj(cj, lj + sj)] subject to

cj + kj+1 ≤ ej + kj(1 + r)− Tj(ej, rkj) and kj+1 ≥ 0,∀j ≥ 1

ej = whjlj for j < Retire and ej = 0 otherwise

hj+1 = H(hj, sj, zj+1, a), 0 ≤ lj + sj ≤ 1 and k1 = 0.

An agent faces a budget constraint where period resources equal labor earnings ej, the value

of financial assets kj(1 + r) that pay a risk-free return of r less net taxes Tj. These resources

are divided between consumption cj and savings kj+1. Each period the agent divides up his

one unit of available time into distinct uses: work time lj and learning time sj. Leisure time

is implicitly the difference between the one unit of available time and total labor time lj + sj.

Earnings ej equal the product of a rental rate w, skill hj and work time lj before a retirement

age, denoted Retire, and is zero afterwards. Learning time sj and learning ability a augment

future skill through the law of motion for future human capital hj+1 = H(hj, sj, zj+1, a).

Equilibrium The model economy has an overlapping generations structure. The fraction µj

of age j agents in the economy obeys the recursion µj+1 = µj/(1+n), where n is the population

growth rate. There is an aggregate production function F (K,L) with constant returns which

converts aggregate quantities of capital K and labor L into output. Capital depreciates at rate

δ.

The variables (K,L,C, T ) are aggregate quantities of capital, labor, consumption and net taxes

per agent. Aggregates are straightforward functions of the decisions of agents, population

fractions (µ1, µ2, ..., µJ) and the distribution ψ of initial conditions. For example, the capital

stock is the weighted sum of the mean capital holding within each age group.

K =
J∑
j=1

µj

∫
X

E[kj(x, z
j)|x]dψ and L =

J∑
j=1

µj

∫
X

E[hj(x, z
j)lj(x, z

j)|x]dψ

C =
J∑
j=1

µj

∫
X

E[cj(x, z
j)|x]dψ and T =

J∑
j=1

µj

∫
X

E[Tj(whj(x, z
j)lj(x, z

j), rkj(x, z
j))|x]dψ

Definition: A steady-state equilibrium consists of decisions (c, l, s, k, h), factor prices (w, r)

and government spending G such that

1. Decisions: (c, l, s, k, h) solve Problem P1.

2. Prices: w = F2(K,L) and r = F1(K,L)− δ
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3. Government Budget: G = T

4. Feasibility: C +K(n+ δ) +G = F (K,L)

The model economies employ the functional forms stated below. The utility function u and

the aggregate production function F are widely employed. The parameter χ in the utility

function affects the growth rate of total labor time (lj + sj) over the working lifetime. The

utility function parameter φ affects the mean of the total labor time. The law of motion for

human capital H takes the functional form used in Ben-Porath (1967). The shocks z to an

agent’s stock of human capital are independent and identically distributed across periods and

are normally distributed. Shocks are idiosyncratic in that a known fraction of agents receive

a shock lieing in any particular set of interest. The distribution ψ of initial conditions has

the property that the marginal distributions for learning ability and initial human capital are

both Pareto-Log-Normal (PLN) distributions - see Appendix B.2. This bivariate distribution

is characterized by 6 parameters.3

Benchmark Model Functional Forms:

Utility: uj(c, l + s) = c(1−ρ)

1−ρ − φ exp(χ(j − 1)) (l+s)
(1+ 1

ν )

1+ 1
ν

Production: Y = F (K,L) = AKγL1−γ

Human Capital: H(h, s, z, a) = exp(z)[h+ a(hs)α] and z ∼ N(µz, σ
2
z)

Initial Conditions: a ∼ PLN(µa, σ
2
a, λa), log h1 = β0 + β1 log a+ log ε

and ε ∼ LN(0, σ2
ε )

3 Empirics

This section characterizes how the distributions of earnings and work hours for male workers

move with age. Our data come from the Social Security Administration (SSA) and the Panel

Study of Income Dynamics (PSID). We use tabulated SSA male earnings data from Guvenen,

Ozkan and Song (2014) and PSID male earnings and hours data from Heathcote, Perri and

Violante (2010). These data sets are described in Appendix A.1.

We characterize age profiles for a number of earnings and hours statistics. When we use SSA

data, we calculate an earnings statistic from the data for males age j in year t and then run

3We use the Pareto-Log-Normal distribution as early work with bivariate lognormal distributions led to
difficulties matching upper tail properties of the US age-earnings distribution.
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an ordinary-least-squares regression of this statistic on a third-order polynomial in age plus a

dummy variable for each year. We plot the age effects from the estimated age polynomial after

vertically shifting the polynomial to run through the mean across years of the data statistic at

age 45.4 The earnings statistics of interest for each age and year are (i) median earnings, (ii)

the 10-50, 90-50 and 99-50 earnings percentile ratios and (iii) the Pareto statistic at the 99th

percentile of earnings. A similar age and time effects regression is applied to mean hours in

PSID data and is described in Appendix A1. Hours are stated as a fraction of total discretionary

time which is set to 14 hours per day times 365 days per year.

The Pareto statistic at the 99th percentile for age group j in year t is the mean earnings ē99j,t

for observations above this percentile divided by ē99j,t less the 99th percentile e99j,t. The Pareto

statistic is an inverse measure of the thickness of the upper tail of the earnings distribution

as the statistic takes on a lower value when the upper tail is thicker. We analyze the Pareto

statistic because it enters the revenue maximizing tax rate formula used by Diamond and Saez

(2011) and the tax rate formula in Badel and Huggett (2015).

Paretoj,t =
ē99j,t

ē99j,t − e99j,t

Figure 1 highlights the results. Median earnings more than double over the working lifetime.

The 90-50 and the 99-50 earnings percentile ratio both increase over most of the working

lifetime. The increase in the 99-50 earnings percentile ratio is particularly strong. It doubles

from a ratio of near 4 at age 25 to a ratio of near 8 at age 55. Thus, earnings dispersion increases

with age in the upper half of the distribution. The Pareto statistic decreases with age and is

below 2.0 after age 45. Figure 1 also shows that the mean work hours profile is hump-shaped

but fairly flat with age.

We examine the sensitivity of the profiles in Figure 1 in two directions. First, we analyze

profiles based on SSA data when we control for cohort effects rather than time effects. The

main change is that the magnitude of the increase in earnings dispersion with age in the top

half of the distribution is greater than for the time effects case. Second, we analyze earnings

using PSID data rather than SSA data. The age effects based on PSID data display the same

qualitative behavior as the age effects based on SSA. However, measures of earnings dispersion

display greater dispersion at a given age in SSA data than in PSID data.

4This normalization is applied to all earnings statistics with the exception of median earnings, which is
normalized to equal 100 at age 55.
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Table 1 - Parameter Values
Category Functional Forms Parameter Values
Demographics µj+1 = µj/(1 + n) Retire = 41, n = 0.012

j = 1, ..., 63 (ages 23-85)
Technology Y = F (K,L) = AKγL1−γ and δ (A, γ) = (0.919, 0.322)

δ = 0.0673
Tax System Tj = T ssj + T incj statutory rates - see text

Preferences uj(c, l + s) = φ = 16.3, β = 0.975, χ = −0.00514

c1−ρ

1−ρ − φ exp (χ(j − 1)) (l+s)1+
1
ν

1+ 1
ν

ρ = 1.0 (log utility), ν = 0.551

Human Capital H(h, s, z, a) = exp(z) [h+ a(hs)α] α = 0.632
and z ∼ N(µz, σ

2
z) (µz, σz) = (−0.0133, 0.111)

σz follows HVY (2011)
Initial Conditions a ∼ PLN(µa, σ

2
a, λa) and ε ∼ LN(0, σ2

ε ) (µa, σ
2
a, λa) = (−0.442, 0.00149, 3.99)

log h1 = β0 + β1 log a+ log ε (β0, β1, σ
2
ε ) = (5.44, 1.18, 0.253)

Note: Demographic, Technology and Tax System parameters and parameter values for (ρ, σz) are set without
solving for equilibrium. All remaining model parameters are set so that equilibrium values best match targeted
moments. Parameters are rounded to 3 significant digits.

4 Model Parameters

We set parameter values following three main considerations. First, we set some parameters to

fixed values without computing equilibria to the model economy. Parameters governing demo-

graphics, technology and the tax system are set in this way as is the coefficient of relative risk

aversion. Second, the parameter governing the standard deviation of human capital shocks is

set to an estimate from Huggett, Ventura and Yaron (2011). Their estimate is based on log wage

rate variation towards the end of the working lifetime. Third, the remaining model parameters

are set so that equilibrium properties of the model best match empirical targets, including those

displayed in Figure 1.5 Appendix B.1 describes the computation of an equilibrium.

Demographics An agent enters the model at a real-life age of 23, retires at age Retire = 63

and dies after age 85. These ages correspond to model ages 1 to 63. The population growth

rate n = 0.012 is set to the geometric average growth rate of the U.S. population over the

period 1940-2012. Population fractions µj sum to 1 and decline with age by the factor (1 + n).

Technology We target empirical values for capital’s share of output, the capital-output ratio

K/Y , the real return to capital r together with the normalization w = 1. We set γ = 0.322

to produce the capital share. Then, given γ, we set (A, δ) so that (r, w) = (0.42, 1.0) when

K/Y = 2.947. Finally, when we set the remaining model parameters, we impose the restriction

K/Y = 2.947. The empirical sources for these values are described in Huggett, Ventura and

Yaron (2011).

5Describe here the function that we minimize.

7



Tax System Taxes in the model are the sum of a social security and an income tax: Tj(ej, kjr) =

T ssj (ej) + T incj (ej, kjr). The model social security tax function is T ssj (ej) = τ ss min [ej, emax] for

j < Retire and T ssj (ej) = −bē otherwise. Earnings are taxed at a rate τ ss for earnings up to a

maximum taxable earnings level emax. After a retirement age, agents receive a common benefit

set to b times the mean earnings ē in the model. We set τ ss = 0.106, emax = 2.56ē and b = 0.4.6

The model income tax is based on statutory federal tax rates and a combination of other tax

rates. Figure 2 plots marginal federal tax rates in 2010 for different tax brackets as a function

of total income. We state total income in Figure 2 in multiples of the 99th percentile of the

income distribution in 2010. The top federal tax rate of 35 percent in 2010 starts at a total

income level somewhat above the 99th percentile. Figure 2 also plots a combined marginal tax

rate that equals the federal rate plus a constant. The constant is set to 7.5 percent so that

the combined top income tax rate in the model equals the 42.5 percent top rate calculated by

Diamond and Saez (2011, p.168).7 We pass a smooth curve through the data points describing

the combined marginal tax rate to construct the model income tax function. The marginal rate

is fixed at 42.5 percent for income levels in the top income bracket. Appendix A.2 discusses

the construction of the tax function.

The model income tax T incj is the sum of two components. The first component approximates

the combined marginal tax rates as displayed in Figure 2. This component applies to income

from earnings and social security transfers. The second component taxes capital income kjr

at a proportional capital income tax rate τ cap = 0.209 that equals the federal tax rate of 15

percent on dividends and capital gains in 2010 plus the average state top tax rate of 5.9 percent

reported in Diamond and Saez (2011). Thus, the model income tax function features progressive

taxation of earnings and a flat tax rate on capital income. The lower federal tax rate on some

forms of capital income (e.g. dividends and capital gains) is one reason why average federal

income tax rates for extremely high income groups in U.S. data are well below the top federal

tax rate.8 Diamond and Saez (2011, footnote 3) claim that the lower tax rate on capital gains

is key for accounting for this fact. We view the flat tax on capital income within the model as

a useful way to approximate the taxation of capital income for high income households.

6We set emax to equal the ratio of the maximum taxable earnings level $106, 800 in 2010 to average earnings
$41, 673 in 2010 from the Social Security Administration’s Annual Statistical Supplement (2012, Table 2.A.8).
The model tax rate τ = 0.106 is the old-age and survivor’s insurance tax rate in the U.S. social security system.
We set b = 0.4 so that the benefit in the model is 40 percent of mean earnings. The benefit implied by the
U.S. old-age benefit formula is approximately 40 percent of mean earnings for an individual who earns mean
earnings in each year of the working lifetime - see Huggett and Parra (2010, Figure 1).

7Their calculation accounts for federal and state income taxes, un capped medicare taxes, average sales taxes
and rules on the deductibility of various taxes.

8Guner, Kaygusuz and Ventura (2013) document this fact using Internal Revenue Service data.
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T incj (ej, kjr) = T (ej + bē× 1j≥Retire) + τ capkjr

Preferences We set the coefficient of relative risk aversion to ρ = 1 which is the log util-

ity case. Chetty (2006, p.1830) states “A large literature on labor supply has found that the

uncompensated wage elasticity of labor supply is not very negative. This observation places a

bound on the rate at which the marginal utility of consumption diminishes, and thus bounds

risk aversion in an expected utility model. The central estimate of the coefficient of relative

risk aversion implied by labor supply studies is 1 (log utility) and an upper bound is 2 ... .”

This parameter controls the strength of the income effect of a tax reform. All remaining model

parameters, including the remaining parameters governing the utility function, are set to best

match empirical targets.

Remaining Model Parameters We set all remaining model parameters so that equilibrium

properties of the model best match the earnings and hours properties documented in Figure

1, the average cross-sectional Pareto coefficient for earnings at the 99th percentile for earnings

over the period 1978-2011 and a regression coefficient from MaCurdy (1981). The remaining

parameters are those governing (i) initial conditions (µa, σ
2
a, λa) and (β0, β1, σ

2
ε ), (ii) the elas-

ticity of the human capital production function α and the mean of the human capital shock µz

and (iii) the utility function parameters (β, φ, ν, χ).

The last target mentioned above is based on evidence from the literature on the Frisch elasticity

of labor supply that regresses the change in log labor hours on the change in a log wage measure

and a constant term. The regression equation used in the literature is stated below. The target

value for α1 is 0.125 based on MaCurdy (1981, Table 1 row 5-6) who uses earnings and hours

data for white males age 25-55. The small value of this regression coefficient is often viewed as

suggesting that the revenue maximizing top tax rate will be quite large.

∆ log hours = α0 + α1∆ logwage+ ε

To connect to evidence on this regression coefficient, we produce data on earnings and hours

from the model and calculate model wages as earnings divided by hours. Hours data within the

model is taken to be total hours: the sum of work time and learning time. The sample within

the model is based on agents age 25-55 following MaCurdy. We then estimate the coefficients

in the linear regression. Section 5 and Appendix B.3 discusses the results of the estimation of

the regression equation and the construction of model data sets.
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5 Properties of the Model Economy

5.1 Age-Earnings Distribution

Figure 3 highlights model properties for a number of statistics that were directly targeted in

setting model parameters. The model produces a hump-shaped median and mean earnings

profile by a standard human capital mechanism. Agents concentrate learning time, and thus

human capital production, early in the working lifetime. Towards the end of the working

lifetime, both the median and the mean human capital levels fall. This occurs because time

allocated to learning goes to zero towards the end of the working lifetime and because the mean

of the multiplicative shock to human capital is below one (i.e. E[exp(z)] = exp(µz + σ2
z

2
) < 1).

Thus, on average skills depreciate.

Measures of earnings dispersion increase with age in U.S. data. Specifically, the 99-50 earnings

ratio doubles from age 25 to age 50 and the Pareto coefficient falls with age. The model

economy has two forces leading to increasing earnings dispersion: differences in learning ability

and human capital shocks. The standard deviation of shocks σz = 0.111 is set to an estimate

from Huggett, Ventura and Yaron (2011), who estimate this parameter using specific moments

of log wage rate changes for older workers in panel data. Given this estimate, the parameters

of learning ability and initial human capital are set to match the earnings and hours facts in

Figure 3.

5.2 Distribution of Initial Conditions

Simple summary measures of the distribution of initial conditions are given in Table 2. The

distribution is based on the discrete approximation described in Appendix B.2. Human capital

follows a right-skewed distribution with a mean-median ratio of 1.24 and a coefficient of variation

equal to 0.73. The coefficient of variation of learning ability is 0.34. Thus, the model requires

a source for increasing earnings dispersion with age beyond that from idiosyncratic risk to

produce the increase in the 90-50 and 99-50 ratio observed in U.S. data.

Table 2 - Distribution of Initial Conditions

SD(h1)/Mean(h1) Mean(h1)/Median(h1) SD(a)/Mean(a) Corr(h1, a)
0.73 1.24 0.34 0.60

Log learning ability and log human capital are positively correlated at age 23. The correlation

in levels, rather than log units, is 0.60. The positive correlation is consistent with Huggett,

Ventura and Yaron (2006, 2011) who argue that a zero correlation would tend to produce
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a U-shaped earnings dispersion pattern with age not found in U.S. data and that a positive

correlation eliminates such counterfactual implications.

The positive correlation has two important model implications: (i) high learning ability agents

will tend to have high lifetime earnings and (ii) agents with high lifetime earnings will have

very high earnings growth rates over the working lifetime. This implies that top earners are

disproportionally older agents with very high learning ability. For agents with very high learning

ability, increasing the top tax rate acts as an increased tax on the benefits of skill investments

while leaving the marginal cost of these skill investments made earlier in life unchanged. This

is the key mechanism behind the fall in skills. For this mechanism to work it is key that top

earners typically become top earners later in life. Section 6 shows that males with very high

lifetime earnings in US data have extremely large average earnings growth rate over the working

lifetime.

5.3 Mean Earnings, Wage and Human Capital Profiles

Figure 4 highlights the mean profiles for earnings, wage rates, human capital and hours. The

mean wage rate profile is steeper than the mean human capital profile. This occurs because the

total hours profile is flatter than the work time profile. In setting model parameters, we assume

that what is measured in PSID data between ages 23 to 62 is total hours which comprises model

work time and model learning time. Wallenius (2011) also makes this assumption.

5.4 Regressing the Change in Hours on the Change in Wages

The labor literature has estimated the coefficients in the linear regression equation below. For

example, MaCurdy (1981) uses PSID data for white males age 25-55 and finds a regression

coefficient of 0.125.9 Altonji (1986) reexamines MaCurdy’s framework and concludes that

regression coefficients between 0 and 0.35 can be obtained using PSID data for prime-age

males. Domeij and Floden (2006) find similar results based on PSID data over a longer time

period. This type of evidence is behind the view that labor hours are not very elastically

supplied by prime-age males.10 This evidence has also been used to support the view that very

high top tax rates may be revenue maximizing.

∆ log hoursj = α0 + α1∆ logwagej + εj

9This is the average of the point estimates from MaCurdy (1981, Table 1 row 5-6).
10See Keane (2011) and Keane and Rogerson (2012) for recent reviews of the literature that examines this

regression equation. MaCurdy (1981) argues that within exogenous-wage models the regression coefficient α1

is an estimate of the preference parameter ν under appropriate conditions.
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We set the parameters of the human capital model to minimize the distance between data

statistics and model statistics. One of these data statistics is the regression coefficient α1 =

0.125. The model counterpart to the empirical regression coefficient is based on the 25-55 age

group when wagej = ej/(lj + sj). The model produces a regression coefficient of α1 = 0.114.

Appendix B.3 offers an interpretation for why the regression coefficients in Table 3 lie below the

value of the utility function parameter ν = .551 from Table 1 and relates our work to findings

in Domeij and Floden (2006).

Table 3 - Model Regression Coefficient α1

Wage Measure Age 25-55 Age 36-62 Age 50-60
wagej = ej/(lj + sj) 0.114 0.130 0.128
wagej = ej/lj 0.134 0.137 0.190
wagej = ej(1− τ ′j)/lj 0.152 0.153 0.221

Note: Model hours on the left-hand side of each regression are calculated as hoursj = lj + sj . The symbol τ ′j
denotes the marginal earnings tax rate. The results are based on the parameters in Table 1, where ν = 0.551.

Appendix B.3 describes the instrumental variables regression method and the construction of the model data

sets.

5.5 Earnings, Income and Wealth Distributions

Table 4 compares statistics of the distribution of earnings, income and wealth in the model

economy with those from the U.S. economy. The model produces an income distribution that

does not concentrate as much income in the upper tail as compared to the U.S. distribution. The

U.S. income data summarized in Table 4 use the tax unit (see Alvaredo, Atkinson, Piketty and

Saez, The World Top Incomes Database) as the unit of observation, measure income excluding

capital gains and average each statistic over the period 1978-2011. We measure the income facts

averaged over the 1978-2011 period since the earnings process in the model targets earnings

statistics calculated from data over the same period. Over this period the top income share

has a strong upward trend. The model produces more than half of the fraction of wealth held

by the top 1 percent of U.S. households. It is well known, see Huggett (1996), that life-cycle

models that are calibrated to match features of the U.S. age-earnings distribution have difficulty

matching the wealth held by the top 1 percent.
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Table 4 - Distribution of Earnings, Income and Wealth
Variable Economy Top 1 % Top 5 % Top 20 % Pareto Coefficient

at the 99th percentile
Earnings Model 11.6 26.5 52.2 2.00

US 1978-2011 10.8 24.1 49.9 2.00
Income Model 11.5 26.5 52.2 2.06

US 1978-2011 12.7 27.4 - 2.03
Wealth Model 17.3 40.1 74.9 2.15

US 2007 33.6 60.3 83.4 1.81

Note: (1) US earnings distribution facts are averages over the years 1978-2011 based on our calculations from
tabulations of the SSA data set constructed by Guvenen et al. (2013). (2) US income distribution facts are
averages over the years 1978-2011 based on income data from World Top Incomes Database that exclude capital
gains. (3) US wealth distribution facts are from Diaz-Gimenez, Glover and Rios-Rull (2011) based on the 2007
Survey of Consumer Finances.

6 Assessing the Tax Reform

6.1 Laffer Curve

We analyze the Laffer curve implied by a reform that alters the top tax rate on earnings but

leaves the tax rate on capital income unchanged. Thus, the top tax rate of 42.5 percent, graphed

previously in Figure 2, is changed without changing the tax rate schedule below the top tax

bracket. Lump-sum transfers are positive if more revenue is collected in equilibrium under the

new tax system, given that government spending is held constant.

Figure 5 displays the Laffer curves. The horizontal axis measures the top tax rate and the

vertical axis measures the equilibrium lump-sum transfer as a percentage of pre-reform output.

The Laffer curve in the benchmark model peaks at a tax rate of roughly 52 percent. The

transfer is below 0.05 percent of the initial steady-state output. Thus, the Laffer curve in the

benchmark model is flat in that little additional revenue is raised. The top of the Laffer curve

occurs at a tax rate that is well below the 73 percent top rate that Diamond and Saez (2011)

highlight as revenue maximizing.

Figure 5 also displays Laffer curves for different values of the utility function parameter ν. We

consider two alternative values ν = 0.35 and ν = 0.75 and repeat the estimation procedure from

section 4, choosing the remaining parameters to best match targets.11 The revenue maximizing

top tax rate increases as the parameter ν decreases.

Figure 6 plots a measure of welfare gains associated with the tax reform in the benchmark

model. We calculate the ex-ante expected utility of a newborn agent in the benchmark model

as well as in a steady-state equilibrium corresponding to each value of the new top rate. This

could be viewed as a calculation of ex-ante expected utility behind the veil of ignorance so

11The targets are the same as those used in section 4 with the exception that we do not target the regression
coefficient estimated by MaCurdy (1981).
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that agents do not know their initial conditions. We then calculate the percentage increase in

consumption at all ages and states that is equivalent in expected utility terms to the ex-ante

expected utility obtained in steady state under the new tax system. The equivalent consumption

gain is a small fraction of 1 percent and is presented in Figure 6 under the legend label ALL.

Intuitively, the gain is small because the transfer is small and factor prices change very little

as both aggregate capital and labor fall by approximately the same percentage.

Figure 6 also documents the equivalent consumption welfare gains measure for newborn agents

conditional on learning ability. The welfare measure falls for agents with the two highest

learning ability levels (i.e. ability levels 8-9) as the top tax rate increases. These agent types

have the highest probability of becoming top earners.

For agents with learning ability at or below median ability, the equivalent consumption welfare

measure has the same qualitative pattern as the Laffer curve. Intuitively, this follows because

the probability that these agents will pass the threshold associated with the top rate is nearly

zero. Thus, these agents are impacted mainly by the transfer and the change in factor prices

associated with the new aggregate factor inputs. Moreover, factor prices change very little

across steady states because aggregate capital and labor inputs fall by a similar percentage.

6.2 Understanding the Role of Human Capital Accumulation

What role does skill change play in accounting for the shape of the model Laffer curve? To

answer this question, consider an alternative economy that has the same preferences, technology,

initial conditions and tax system as the benchmark model. The alternative economy and the

human capital model are observationally equivalent in steady state under the benchmark tax

system in terms of consumption, wealth, earnings and income. The key difference is that when

the tax system changes then human capital investments change in the benchmark model but

remain unchanged in the exogenous human capital model.

In the alternative model, the time investment decisions sj(x, z
j) as a function of initial condition

x = (h1, a) and shock history zj are fixed and do not vary as the tax system changes. These

decisions are set to equal those in the benchmark model under the benchmark tax system. In

the benchmark model, these decisions are allowed to adjust when the tax system changes. In

the alternative model all decisions other than the time investment decision are allowed to be

adjusted to maximize expected utility when the tax system changes. Appendix B.1 describes

the computation of equilibria in this model.

Figure 7 plots the Laffer curve in the two models. The top of the Laffer curve for the exoge-

nous human capital model raises roughly five times as much extra revenue compared to the

benchmark human capital model. Thus, endogenous skill change flattens out the Laffer curve
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compared to an otherwise similar model that ignores the possibility of skill change in response

to changes in the tax system. The top of the Laffer curve in the exogenous human capital

model occurs at a much higher top tax rate equal to 66 percent under the benchmark reform.

Intuitively, the Laffer curves differ because aggregate labor input L is more elastic with respect

to a change in the top rate in the human capital model. When we decompose the change in

the aggregate labor input across steady states, more than half of the fall in the aggregate labor

input from the original steady state to the steady state with top rate set to 52 percent is due

to skill change as opposed to changes in work time at fixed skills. By far the largest percentage

fall in skills comes from agents with high learning ability late in the working lifetime.

whj(1− τ ′j) =
Retire−1∑
k=j+1

(
1

1 + r̂
)k−j

dhk
dsj

wlk(1− τ ′k)

A mechanism behind the fall in skill is easily grasped from the Euler equation for skill investment

above. Abstracting from idiosyncratic risk for simplicity, at a best choice an agent equates the

marginal cost of an extra unit of time spent in skill production at age j to the discounted

marginal benefit of the extra skill production dhk
dsj

in future periods, where r̂ is the after-tax

real interest rate. Now consider an increase in the top tax rate. Absent any adjustment, the

left-hand side of the Euler equation does not change for an agent with earnings below the top

tax rate but some of the marginal net-of-tax-rate terms (1− τ ′k) decrease for an agent that will

be above the threshold in the future. Thus, some adjustment must occur. A decrease in time

investment in skill production increases the future marginal product terms dhk
dsj

. If future labor

hours lk decrease in response to the increase in the top tax rate, consistent with model behavior

for agents with high learning ability, then an even larger fall in skill investment occurs at age

j.

6.3 A Sufficient Statistic Formula

Badel and Huggett (2015, Theorem 1) derive a formula that states the revenue maximizing

tax rate τ ∗ in terms of three elasticities. Their formula applies to static models and to steady

states of dynamic models. It is derived based on three model elements: (i) a probability space

of agent types (X,X ,P), (ii) functions (y1, ..., yn) that map agent type x ∈ X and a top tax

rate τ into income and expenditure decisions and (iii) a tax function T . The tax function is

assumed to be separable in that T (y1, ..., yn; τ) = T1(y1; τ) + T2(y2, ..., yn). In addition, T1 has

a constant top tax rate τ that applies to income levels y1 beyond a threshold y.

The Badel-Huggett formula is stated below. It differs from the widely-used formula (i.e. τ ∗ =

1/(1 +aε)) that Diamond and Saez employ in that there are two extra terms in the numerator.
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The formula is based on aggregate variables that are calculated by integrating individual-level

variables over the sets X1 ≡ {x ∈ X : y1(x, τ
∗) > y} and X2 ≡ {x ∈ X : y1(x, τ

∗) ≤ y}.

τ ∗ =
1− a2ε2 − a3ε3

1 + a1ε1

(a1, a2, a3) =

( ∫
X1
y1dP∫

X1

[
y1 − y

]
dP

,

∫
X2
T (y1, ..., yn; τ)dP∫
X1

[
y1 − y

]
dP

,

∫
X1
T2(y2, ..., yn)dP∫
X1

[
y1 − y

]
dP

)

(ε1, ε2, ε3) =

(
d log(

∫
X1
y1dP )

d log(1− τ)
,
d log(

∫
X2
T (y1, ..., yn; τ)dP )

d log(1− τ)
,
d log(

∫
X1
T2(y2, ..., yn)dP )

d log(1− τ)

)

The Badel-Huggett formula applies to static models and to steady states of dynamic models,

whereas the widely-used formula applies to some static models. The Badel-Huggett formula

handles two issues that are not accounted for by the widely-used formula. First, it allows the

total taxes
∫
X2
T (y1, ..., yn; τ)dP paid by agent types below the threshold to vary as the top

tax rate varies. The term a2ε2 in the formula is non-zero when this occurs. Agent types below

the threshold are in the set X2. In the human capital model ε2 > 0 because agents with high

learning ability, who are below the threshold early in life, anticipate crossing the threshold with

positive probability later in life. Their investments in human capital fall as (1 − τ) decreases.

Second, the Badel-Huggett formula accounts for the possibility that agent types above the

threshold pay other taxes
∫
X1
T2(y2, ..., yn)dP which vary as the top tax rate varies. The term

a3ε3 is non-zero when this occurs. In the human capital model ε3 > 0 because top earners

accumulate less wealth and pay less in capital income taxes when the net-of-tax rate (1 − τ)

decreases.12

We now calculate all the terms in the top tax rate formula. We do so by mapping equilibrium

variables in the human capital model into the three model elements used in deriving the top

tax rate formula. To apply the formula, define an agent type x = (h1, a, j, z
j) to be initial

conditions (h1, a), age j and (partial) shock history zj. Let y1 be labor income, y2 be social

security transfer income and y3 be capital income.13

12In some static models, such as the Mirrlees (1971) model, the two extra terms a2ε2 and a3ε3 in the formula
are both zero. This issue and other issues related to interpreting and applying this formula are discussed in
detail in Badel and Huggett (2015).

13The notation employed in defining (y1, y2, y3) emphasizes that equilibrium factor prices and decisions depend
on the top tax rate τ .
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Table 5 - Revenue Maximizing Top Tax Rate Formula

Terms endogenous human capital model exogenous human capital model
a1 × ε1 1.97× .396 = .780 1.97× .240 = .473
a2 × ε2 3.06× .019 = .059 3.06× .014 = .044
a3 × ε3 .043× .508 = .022 .043× .459 = .020

τ ∗ = 1−a2ε2−a3ε3
1+a1ε1

.52 .64

τ at peak of .52 .66
Laffer curve

Note: The elasticities (ε1, ε2, ε3) are calculated by a difference quotient using the initial steady state value

τ = 0.425 and the value τ = 0.52. The sets X1 and X2 are defined using the threshold y in Figure 1 at which

the top tax rate begins and using τ = .425.

y1(x, τ) ≡

{
w(τ)hj(h1, a, z

j; τ)lj(h1, a, z
j; τ) j < Retire

0 otherwise

y2(x, τ) ≡

{
0 j < Retire

bē otherwise

y3(x, τ) ≡ r(τ)kj(h1, a, z
j; τ)

The tax function T (y1, y2, y3; τ) has two components. The component T1(y1; τ) = T prog(y1; τ)+

τ ss min{y1, emax} combines the progressive taxation of earnings and the social security earnings

tax in the model. The remaining component T2(y2, y3) = T prog(y2) − y2 + τ capy3 captures the

taxation of capital income and the net taxation of social security income.

Table 5 calculates the coefficients (a1, a2, a3) and the elasticities (ε1, ε2, ε3) in the formula at

the pre-tax reform steady state.14 For the moment, we take away three messages from Table

5: (1) the formula accurately predicts the top of the Laffer curve in both models, (2) the two

“extra terms” in the numerator act to reduce the revenue maximizing rate compared to the

widely-used formula and (3) the earnings elasticity of top earners ε1 = 0.396 is larger in the

human capital model than in the exogenous human capital model ε1 = 0.240 and accounts for

much of the difference in the peaks of the Laffer curves according to the formula.

6.4 Elasticities: Short-Term Evidence

Evidence on the elasticity of earnings or income in response to a change in the net-of-tax

rate comes from the elasticity of taxable income literature. Saez, Slemrod and Giertz (2012)

14The formula in Badel and Huggett (2015) holds exactly when elasticities and coefficients are calculated at
the revenue maximizing top tax rate. In practice, such formulae are used to predict the top of the Laffer curve.
Thus, inputs are calculated away from the maximum as in Diamond and Saez (2010).
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review this literature. Much of the literature applies the regression framework below, where

the parameter ε is the elasticity, zit is income of individual i at time t, τt(zit) is the marginal

tax rate, f(zit) = log zit is an income control and αt are time dummy variables.15

log

(
zit+1

zit

)
= ε log

(
1− τt+1(zit+1)

1− τt(zit)

)
+ βf(zit) + αt + νit+1

Saez et al. (2012) estimate elasticities using U.S. data from 1991-97 and the regression equation

above. Their estimation is based on income variation before and after a tax reform from the

Clinton administration that occurred in 1993. This reform increased the average marginal tax

rate of the top 1 percent but did not significantly change the average marginal tax rate for the

rest of the top 10 percent. Their panel consists of annual income histories for taxpayers with

incomes in the top 10 percent of the income distribution in 1991. Saez et al. (2012, Table 2)

estimates the regression equation above using three different choices of instruments for log net-

of-tax-rate changes, different control variables and sample periods and a two-stage-least-squares

estimator.16

In Table 6, we use the same regression equation specification, instrument definitions, sample

definitions and estimation techniques (i.e. two-stage-least squares) and apply them to a (partial

equilibrium) tax reform in the two models analyzed in Table 5. The benchmark tax system

applies in period t = 1 and t = 2 and agents view this system as being permanent. Agents

are surprised to learn that the model tax system is modified permanently at t = 3. They learn

this at the start of period t = 3. Thus, the model periods t = 1, ..., 7 correspond to the years

1991− 1997 for the US economy. In period 3, the tax system is modified by increasing the top

tax rate to τ̄ = 0.52.

We take away two messages from Table 6. First, the human capital model produces an empirical

elasticity in the range of 0.15 to 0.3. Diamond and Saez (2011) claim that a mid-range estimate

for the short-term elasticity of top earners in the U.S. is ε = 0.25. Thus, the models that we

analyze are consistent with such evidence. While ε = 0.25 may be a mid-range estimate for

U.S. top earners, one should keep in mind that the estimates in the literature and in Saez et al.

(2012, Table 1-2) vary widely. Second, when standard methods from the literature are applied

to a tax reform within the human capital model then the estimated elasticity ε is systematically

below the true long-run model elasticity ε1 = 0.396 that is relevant for determining the top of

15Saez et al. (2012, footnote 37) state that a static optimization problem with a quasi-linear utility function

u(c, z) = c− z0 ( z
z0

)1+1/ε

1+1/ε generates income response functions consistent with such a regression equation.
16Instrument 1 is the indicator function taking the value 1 if individual i is in the top 1 percent in 1992 (i.e.

1{i∈T1992}). Thus, T1992 denotes the set of individuals in the top 1 percent in 1992 which is the pre-reform year.

Instrument 2 is 1{i∈T1992 and t=1992}. Instrument 3 is log
(

1−τt+1(zit)
1−τt(zit)

)
and represents the log of the ratio of

net-of-tax rates across years if income were not to change across years.
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Table 6 - Elasticity Estimates

(a) Endogenous Human Capital Model

(1) (2) (3) (4) (5) (6)
Mean Elasticity ε 0.1536 0.2527 0.2688 0.2888 0.2806 0.2982
S.D. (0.0254) (0.0243) (0.0251) (0.0245) (0.0228) (0.0221)
Income Control f(z) No Yes No Yes No Yes
Time Effects αt No No Yes Yes Yes Yes
Instrument 1: 1{i∈T2} Yes Yes
Instrument 2: 1{i∈T2 and t=2} Yes Yes

Instrument 3: log( 1−τt+1(zit)
1−τt(zit) ) Yes Yes

Use data for time periods t = 2, 3 t = 2, 3 All All All All
Long-run Model Elasticity ε1 0.396 0.396 0.396 0.396 0.396 0.396

(b) Exogenous Human Capital Model

(1) (2) (3) (4) (5) (6)
Mean Elasticity ε 0.2128 0.2961 0.2925 0.3131 0.2892 0.3075
S.D. (0.0238) (0.0254) (0.0239) (0.0241) (0.0233) (0.0234)
Income Control f(z) No Yes No Yes No Yes
Time Effects αt No No Yes Yes Yes Yes
Instrument 1: 1{i∈T2} Yes Yes
Instrument 2: 1{i∈T2 and t=2} Yes Yes

Instrument 3: log( 1−τt+1(zit)
1−τt(zit) ) Yes Yes

Use data for time periods t = 2, 3 t = 2, 3 All All All All
Long-run Model Elasticity ε1 0.240 0.240 0.240 0.240 0.240 0.240

Note: (1) We draw 100 balanced panel data sets of 30,000 agents. Each data set mimics the structure of the
data set used by Saez et al. (2012, Table 2). The agents in each balanced panel have labor income above the
90th percentile of earnings at t = 1. We follow these agents from periods t = 1 to t = 7. The tax reform occurs
at t = 3. Factor prices are fixed in all periods. (2) We report means and standard deviations of the point
estimates of ε across 100 randomly drawn balanced panels.
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the Laffer curve.

The proximate explanation for why standard methods underestimate the relevant long-run

model elasticity comes from examining the transition path produced by the reform. Figure 8

shows that aggregate labor input in the human capital model drops sharply in the first period

of the reform (model period 3) and then gradually declines to the new lower steady-state level.

Roughy half of the change in the labor input occurs in the first period of the reform. Thus,

regression methods that use earnings or income changes a year or so after a reform will at best

pick up an hours and factor price response in the human capital model but not the long-run

skill response.

One might conjecture that measuring income and marginal tax rate changes more than a few

periods after a reform may reduce the difference between estimated model elasticities and the

true long-run model elasticity. To analyze this conjecture, we apply the regression specification

and methods in Giertz (2010) to model data. He calculates one-year, three-year and six-

year log income differences and adds extra controls to the basic regression equation from this

section. Appendix B.4 shows that three-year and six-year differences imply lower and sometimes

negative elasticity estimates compared to one-year differences in Table 6. Thus, our findings do

not support the conjecture that increasing the time gap between measurements and applying

the standard panel regression technique from the literature helps to better estimate the long-run

model elasticity ε1.
17

7 Discussion

This article assesses the consequences of increasing the marginal tax rate on top earners from

the perspective of a human capital model. We highlight three points:

1. The top of the Laffer curve in the human capital model occurs at a top tax rate of 52

percent. The extra tax revenue produced at the 52 percent top rate is relatively small -

less than one-tenth of one percent of the output in the model.

2. We provide a formula τ ∗ = (1 − a2ε2 − a3ε3)/(1 + a1ε1) for the revenue maximizing top

tax rate relevant for steady states of dynamic models. This formula accurately predicts

the top of the model Laffer curve.

17The long-run elasticity ε1 in the Badel-Huggett formula is based on how aggregate earnings for a set of
“agent types” moves across equilibria as the tax rate parameter moves. Thus, conceptually the elasticity ε1 does
not involve measuring how earnings change across time periods. The empirical methods under review examine
how an earnings or an income measure for a fixed collection of tax units changes across time periods.
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3. There are two main reasons why we find a 52 percent revenue maximizing top rate,

whereas Diamond and Saez (2011) argue that it is roughly 73 percent. First, we account

for two extra terms (a2ε2 and a3ε3) that Diamond and Saez do not consider. The extra

terms arise generally in dynamic models and are both positive in the human capital

model. There are no estimates for these two extra elasticities in the literature. Second,

we disagree on the value of the long-run elasticity ε1. It is ε1
.
= 0.4 in the human capital

model, whereas the Diamond-Saez view is that ε1 = 0.25 is a mid-range estimate for the

short-term elasticity. They employ this short-term value, given the absence of convincing

long-run estimates.

These differing views on the plausible value of ε1 do not appear to come from differing views as

to what is the central question and what type of responses are relevant to answer this question.

The central question is what is the revenue maximizing tax rate for a permanent reform that

changes only the top tax rate? The relevant response is then the long-term response. Saez et

al. (2012, p. 13) state “The long-term response is of most interest for policy making ... The

empirical literature has primarily focused on short-term (one year) and medium-term (up to

five year) responses, and is not able to convincingly identify very long-term responses.” We

see little to disagree with concerning what response is relevant, what the existing empirical

literature does and what it does not do.

Our approach for weighing in on the plausible value for the long-run elasticity ε1 is in two parts.

First, we follow the quantitative general equilibrium model tradition. An equilibrium model is

posed that offers a clear mechanism for how one becomes a top earner. Model parameters are

then picked so that the model economy matches relevant statistics of the US economy. The most

relevant earnings statistics are the 99th percentile at each age and the Pareto statistic beyond

this threshold at each age. Another relevant statistic is the regression coefficient estimated in

the literature on the Frisch elasticity of male labor hours. MaCurdy (1982), Altonji (1986)

and Domeij and Floden (2006) have all estimated the regression coefficient of the change in log

work hours on the change in log wage rates for prime-age males in PSID data. The small value

of this regression coefficient has been viewed by some public economists (see Saez et al. (2012,

p. 3)) as additional support for the plausibility of a small value for ε1 and, thus, a large value

for the revenue maximizing top tax rate. After setting all model parameters, we calculate the

model-implied value of ε1.

Our second approach for weighing in on the plausible value for the long-run elasticity ε1 is to

examine whether the short-term model elasticity ε is consistent with existing estimates. This

can be viewed as an external model validation exercise. If the model produced a counterfactual

short-term elasticity, then the long-run elasticity would be suspect. Table 6 shows that the

mean value of ε that results from applying the regression framework of Gruber and Saez (2002)
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to model data lie in the interval [.15, .30]. These are precisely the empirical techniques the

literature uses to estimate a short-term elasticity. Thus, the human capital model produces a

short-term empirical elasticity consistent with the Diamond-Saez view summarized earlier. Of

course, the true long-run model elasticity is ε1 = 0.4 and this value determines the top of the

Laffer curve. The long-run model elasticity exceeds the short-term model elasticity because

skills of top earner types respond only after a long lag.

Next issue: other evidence for the mechanism in the model.
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A Appendix

A.1 Data

SSA Data We use Social Security Administration (SSA) earnings data from Guvenen, Ozkan and Song

(2013). We use age-year tabulations of the 10, 25, 50, 75, 90, 95 and 99th earnings percentile for males age

j ∈ {25, 35, 45, 55} in year t ∈ {1978, 1979, ..., 2011}. These tabulations are based on a 10 percent random

sample of males from the Master Earnings File (MEF). The MEF contains all earnings data collected by SSA

based on W-2 forms. Earnings data are not top coded and include wages and salaries, bonuses and exercised

stock options as reported on the W-2 form (Box 1). The earnings data is converted into real units using the

2005 Personal Consumption Expenditure deflator. See Guvenen et. al. (2013) for details.

We construct the Pareto statistic at the 99th earnings percentile for age j and year t as follows. We assume

that the earnings distribution follows a Type-1 Pareto distribution beyond the 99th percentile for age j and

year t. We construct the parameters describing this distribution via the method of moments and the data

values for the 95th and 99th earnings percentiles (e95, e99) for a given age and year. The c.d.f. of a Pareto

distribution is F (e;α, λ) = 1 − ( eα )−λ. We solve the system .95 = F (e95;α, λ) and .99 = F (e99;α, λ). This

implies λ = log .05−log .01
log e99−log e95 . To construct the Pareto statistic at the 99th percentile for age j and year t, it remains

to calculate the mean earnings for earnings beyond the 99th percentile that is implied by the Pareto distribution

for that age and year. The mean follows the formula E[e|e ≥ e99] = λe99
λ−1 .

PSID Data We use Panel Study of Income Dynamics (PSID) data provided by Heathcote, Perri and

Violante (2010), HPV hereafter. The data comes from the PSID 1967 to 1996 annual surveys and from the

1999 to 2003 biennial surveys.

Sample Selection We keep only data on male heads of household between the ages of 23 and 62 reporting to

have worked at least 260 hours during the last year with non-missing records for labor earnings. In order to

minimize measurement error, we delete records with positive labor income and zero hours of work or an hourly

wage less than half of the federal minimum in the reporting year.

Variable Definitions The annual earnings variable provided by HPV includes all income from wages, salaries,

commissions, bonuses, overtime and the labor part of self-employment income. Annual hours of work is defined

as the sum total of hours worked during the previous year on the main job, on extra jobs and overtime hours.

This variable is computed using information on usual hours worked per week times the number of actual weeks

worked in the last year.

Top-coding and bracketed variables HPV impute a value to top-coded observations of each component of

earnings. A Pareto distribution is fitted to the non-top-coded upper end of the observed distribution and the

imputation value is the distribution’s mean conditional on the earnings component being above the top coding

threshold. Also, in some of the early survey years, some of income variables were bracketed. HPV impute

the midpoint of the corresponding bracket to these variables and 1.5 times the bottom of the top bracket for

observations in the top bracket.

Age-Year Cells We split the dataset into age-year cells, compute the relevant moment within each cell and

then collapse the dataset so there is a single observation per age-year cell. We put a PSID observation in the

(a, y) cell if the interview was conducted during year y = 1968, 1970, 1971, ..., 1996 or y = 1998, 2000, 2002 with

reported head of household’s age a in the interval [a, a + 4]. The life-cycle profiles we calculate correspond
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Table A1: Tax Rates and Tax Brackets
Brackets Federal Rate Combined Rate

n qn 100×Rn 100×Rn
1 0 0.0 7.5
2 0.05 10.0 17.5
3 0.1 15.0 22.5
4 0.25 25.0 32.5
5 0.45 28.0 35.5
6 0.65 33.0 40.5
7 1.13 35.0 42.5

Note: Tax brackets are expressed as multiples of the 99th percentile of U.S. income distribution in 2010. Tax
brackets come from 2010 IRS Form 1040 Instructions (Schedule Y-1, pg. 98). The 99th percentile data comes
from the World Top Incomes Database.

to (β23 + d, β24 + d, β25 + d, ..., β63 + d), where the βa are the estimated age coefficients and d is a vertical

displacement selected in the manner described in section 3.

A.2 Tax Function

This appendix describes how the first component of the model income tax function, discussed in section 4, is

implemented.

Step 1: Specify the empirical tax function T̂ (x) using the ordered pairs {(q1, R1), ..., (qN , RN )}.

T̂ (x) =

R1[x− q1] i(x) = 1∑i(x)
n=2Rn−1[qn − qn−1] +Ri(x)[x− qi(x)] i(x) > 1

i(x) ≡ maxn s.t. n ∈ {1, 2, ..., N} and qn ≤ x

The values of {(q1, R1), ..., (qN , RN )} in Table A1 are set based on the 2010 federal tax brackets and rates

for taxable income for married couples filing jointly. Brackets come from Schedule Y-1 in the IRS Form 1040

Instructions for the 2010 tax year. Adding $18, 700 to each of the taxable income brackets from Schedule Y-1

generates total income cutoffs that produce these taxable income cutoffs in Schedule Y-1 for joint filers without

dependents according to the NBER tax program TAXSIM for the 2010 tax year. We state the brackets qn as

multiples of the 99-th percentile of the U.S. income distribution (including capital gains) for the year 2010.18

Finally, we uniformly increase these federal tax rates by 7.5 percent so that the combined rate for the highest

bracket is 42.5 - the top combined rate calculated by Diamond and Saez (2011).

Step 2: Specify the model tax function T (x; ζ) using a 5th order polynomial P , where x denotes the sum of

earnings and social security transfers in the model:

T (x; ζ) =

κP (x/κ; ζ) x ≤ κ

κP (1; ζ) + τ̄ [x− κ] x > κ

18The World Top Incomes Database reports that the US 99th percentile for income in 2010 was $365,026
(reported in 2012 dollars). The 99th percentile is then $348,177 after converting to 2010 dollars using the CPI.
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We set the coefficients ζ to minimize the distance
∑
xi∈Xgrid(T̂ (xi) − T (xi; ζ))2 subject to P (0; ζ) = 0 and

P ′(1; ζ) = 0.425. Xgrid contains 100 points uniformly distributed on the interval [0, q7]. This implies that

ζ = (0.0, 0.093, 0.472,−0.341, 0.099). We set κ = q7× Imodel99 = 1.13× Imodel99 and τ̄ = R7 = 0.425. The quantity

Imodel99 is the 99th percentile of income in the benchmark model economy. This quantity has to be computed

for the benchmark model in an iterative procedure as the model tax system is specified as a function of Imodel99

and ē.

In summary, the model tax function in step 2 approximates the empirical tax function with a polynomial. The

polynomial is restricted to produce zero taxes at zero income and to produce a 42.5 percent marginal tax rate

at the start of the top tax bracket. Beyond the top tax bracket, the model tax function has a marginal tax

rate set equal to the empirical top rate τ̄ = 0.425. The tax function in the benchmark reform differs from the

function specified here only via changes in the top rate τ̄ and the resulting lump-sum transfer. Figure 2 in the

main text displays the marginal earnings tax rates arising from the model income tax system.
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Figure 1: Empirical Life-Cycle Profiles: Earnings and Hours
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Figure 2: Model Tax System
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Figure 3: Life-Cycle Profiles: Data and Model

(a) Median Earnings (b) Earnings Percentile Ratios
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Figure 4: Life-Cycle Mean Model Profiles

(a) Earnings, Wage and Human Capital (b) Time Learning, Working and Total
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Figure 5: Laffer Curves
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Figure 6: Equivalent Consumption Variation
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Figure 7: Laffer Curves: Endogenous and Exogenous Human Capital
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the exogenous human capital model.

Figure 8: Transition Paths

(a) Aggregate Capital Input (b) Aggregate Labor Input
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Figure 9: Growth of Mean Earnings by Percentile of Lifetime Earnings
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Note: Data results are taken from Guvenen, Karahan, Ozkan and Song (2014) based on SSA data. The vertical
axis plots ln Ȳ55 − ln Ȳ25, where (Ȳ25, Ȳ55) are mean earnings at these ages for groups based on percentiles of
the present value of lifetime earnings.

B Appendix - NOT FOR PUBLICATION

B.1 Computation

The algorithm to compute a steady-state equilibrium for the model with top tax rate τ̄ , given all model

parameters, is outlined below.

Main Algorithm:

1. Given τ̄ , guess (K/L, T̄ ). Calculate w = F2(K/L, 1) and r = F1(K/L, 1)− δ.

2. Solve problem DP-1 at grid points x = (k, h) ∈ Xgrid
j (a).

(DP-1) vj(x, a) = max(c,l,s,k′) u(c, l + s) + βE[vj+1(k′, h′, a)] subject to

i. c+ k′ ≤ whl + k(1 + r)− Tj(whl, kr; τ̄ , T̄ ) and k′ ≥ 0

ii. h′ = H(h, s, z′, a) and 0 ≤ l + s ≤ 1

3. Compute (K ′, L′, T̄ ′) implied by the optimal decision rules in step 2.

4. If K ′/L′ = K/L and T̄ ′ = T̄ , then stop. Otherwise, update the guesses and repeat 1-3.

Comments:
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Step 1: A guess for the lump-sum transfer T̄ corresponding to the top rate τ̄ is needed as the model tax system

is specified as a function of these values.

Step 2: Solve DP-1 at age and ability specific grid points in Xgrid
j (a). This involves interpolating vj+1. We use

bilinear interpolation on (k′, h′). To compute expectations, follow Tauchen (1986) and discretize the distribution

of the shock variable z′ with 11 equi-spaced log shocks lieing 3 standard deviations on each side of the mean.

Step 3: Compute aggregates (K ′, L′) as follows. First, consider initial conditions x = (h, a) ∈ Xgrid
1 . For each

x ∈ Xgrid
1 , draw N = 2000 random histories zJ from the distribution resulting from applying the Tauchen pro-

cedure. Use the decision rules from step 2 to compute lifetime histories. Set E[kj(x, z
j)|x] = 1

N

∑N
n=1 kj(x, z

j
n)

and E[hj(x, z
j)lj(x, z

j)|x] = 1
N

∑N
n=1 hj(x, z

j
n)lj(x, z

j
n), where zjn is the n-th draw of the shock history. Com-

pute aggregates as indicated below, where ψ(x) is the probability of x ∈ Xgrid
1 . Appendix A.4 describes how

(Xgrid
1 , ψ(x)) are set. Shock histories are fixed across all iterations in the Main Algorithm. The lump-sum

transfer condition T̄ ′ = T̄ holds when aggregate taxes implied from the computed decision rules equal G.

K ′ =
∑

x∈Xgrid1

J∑
j=1

µjE[kj(x, z
j)|x]ψ(x)

L′ =
∑

x∈Xgrid1

J∑
j=1

µjE[hj(x, z
j)lj(x, z

j)|x]ψ(x)

Setting Model Parameters: Following the discussion in section 4, some model parameters are fixed and the

remaining model parameters are set based on an iterative procedure that involves guessing the parameter

vector, computing equilibria and then revising the guess until the distance between equilibrium model values

and data values is minimized. The algorithm specified above is used to compute equilibria under tax reforms

when all model parameters are determined. A closely-related algorithm is used to set model parameters. When

we set model parameters, the parameters of the tax system (ē, I99) need to be chosen in an iterative way as the

tax system is specified as a function of these endogenous values.

The algorithm to compute the Laffer curve for the exogenous human capital model is given below. The skills

process is by construction exactly the same as in the original benchmark steady-state equilibrium. An equilib-

rium in this model is defined in the same way as in the benchmark model with the exception that the decision

problem differs.

Algorithm for Computing Equilibria in the Model with Exogenous Human Capital:

1. Given top tax rate τ̄ , guess (K/L, T̄ ). Calculate w = F2(K/L, 1) and r = F1(K/L, 1)− δ.

2. Solve problem DP-2 at grid points x = (k; k̄, h̄) for fixed values of ability a.

(DP-2) vj(k; k̄, h̄, a) = max(c,l,k′) u(c, l + s̄) + βE[vj+1(k′; k̄′, h̄′, a)] subject to

i. c+ k′ ≤ wh̄l + k(1 + r)− Tj(wh̄l, kr; τ̄ , T̄ ) and k′ ≥ 0

ii. (h̄′, k̄′) = (H(h̄, s̄, z′, a), k∗j (k̄, h̄, a)) and s̄ = s∗j (k̄, h̄, a).

iii. s∗j (k̄, h̄, a) and k∗j (k̄, h̄, a) are optimal decision rules solving DP-1 from the benchmark model.

iv. 0 ≤ l + s̄ ≤ 1 and s̄ = s∗j (k̄, h̄, a).
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3. Compute (K ′, L′, T̄ ′) implied by the optimal decision rules in step 2.

4. If K ′/L′ = K/L and T̄ ′ = T̄ , then stop. Otherwise, update the guesses and repeat 1-3.

B.2 Initial Conditions

We construct a bivariate distribution based on assumptions A1-2 below.

A1: Let learning ability a be distributed according to a Right-Tail Pareto-Lognormal distribution PLN(µa, σ
2
a, λa).

Let ε be independently distributed and lognormal LN(0, σ2
ε).

A2: log h1 = β0 + β1 log a+ log ε and β1 > 0.

Theorem 1: Assume A1-2. Then h1 is distributed PLN(β0 + β1µa, β
2
1σ

2
a + σ2

ε , λa/β1).

Proof: By definition of the PLN distribution, a ∼ PLN(µa, σ
2
a, λa) can be expressed as a = xy, where

x ∼ LN(µa, σ
2
a) and y is distributed Type-1 Pareto(1, λa). Substitute this identity into assumption A2 and

rearrange.

log h1 = β0 + β1 log x+ log ε+ β1 log y

h1 = exp(β0 + β1 log x+ log ε)yβ1

The first term on the right hand side is distributed LN(β0 + β1µa, β
2
1σ

2
a + σ2

ε). By definition of the Type-1

Pareto distribution, for y0 ≥ 1 we have Prob(y ≤ y0) = 1− y−λa0 . Let z ≡ yβ1 .

Prob(z ≤ z0) = Prob(yβ1 ≤ z0) = Prob(y ≤ z
1
β1
0 ) = 1− z

−λaβ1
0

The second term on the right hand side is distributed Type-1 Pareto with scale parameter 1 and shape

parameter λa/β1. ‖

We now discretize this bivariate distribution. First, construct a discrete approximation (ai, Pi) for i = 1, 2, 3, ..., 9.

Set (P1, ..., P9) = (0.225, ..., 0.225, 0.06, 0.03, 0.005, 0.004, 0.001). Given the probabilities, set learning ability lev-

els to equal conditional means implied by the marginal distribution F (a) implied by PLN(µa, σ
2
a, λa).

a1 = E[a|a ≤ F−1(P1)]

a9 = E[a|a ≥ F−1(1− P9)]

ai = E

a|F−1(

i−1∑
j=1

Pj) ≤ a ≤ F−1(

i+1∑
j=1

Pj)

 for 1 < i < 9.

Second, for any a ∈ Agrid = {a1, ..., a9}, specify a 20 point human capital grid that is equi-spaced in log human

capital units and that ranges 3 standard deviations above and below the conditional mean implied by a and

assumption A2. Probabilities Pj for j = 1, ..., 20 are set following Tauchen (1986). This then implies that Xgrid
1

has 9× 20 points and that ψ(x) = PiPj for x = (ai, hj) ∈ Xgrid
1 .
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B.3 MaCurdy Regressions: An Interpretation

We first describe the construction of the data sets underlying the results in Table 3. We create a data set

of pairs (∆ log hoursj ,∆ logwagej) in two steps. Step 1: For each initial condition x = (a, h) ∈ Xgrid
1 , draw

N = 2000 lifetime shock histories. Appendix A.4 describes the construction of Xgrid
1 and associated probabilities

ψ(x),∀x ∈ Xgrid
1 . Step 2: For each x ∈ Xgrid

1 , shock history and age j in the age range in Table 3, calculate

(∆ log hoursj ,∆ logwagej). We run IV regressions using a two-stage-weighted-least-squares estimator. The

instruments in the first stage are cubic polynomials in age and learning ability and their interactions. We use

the weighted-least-squares estimator with weight 1
N µjψ(x) on an observation, where N = 2000, µj are age

shares defined in Table 1 and ψ(x) are probabilities of initial conditions.

To interpret the results in Table 3, we state a necessary condition for an interior solution to Problem P1

from section 2 and follow an analogous derivation to that in MaCurdy (1981). The intratemporal necessary

condition below states that the period marginal disutility of extra time working equals the after-tax marginal

compensation to work multiplied by the Lagrange multiplier on the period budget constraint. This necessary

condition is then restated using the functional form assumption on the period utility function from section 2.

The second equation takes first differences of the log of the necessary condition. The third equation uses the

Euler equation for asset holding to replace the change in the Lagrange multiplier with model variables and

parameters. The last step assumes that the agent is off the corner of the borrowing constraint (i.e. kj+1 > 0)

and that there is no risk. We do so for transparency. It is well understood that an extra Lagrange multiplier

term enters the last equation when the agent is at a corner (see Domeij and Floden (2006)). When there is risk,

the last equation is modified by an additive “forecast error” term (see Keane (2011) or Keane and Rogerson

(2012)) where the additive term is based on a linear approximation.

u2,j(cj , lj + sj) + λj
[
whj(1− τ ′j)

]
= 0 implies lj + sj =

[
λj
(
whj(1− τ ′j)

)
φ exp (χ(j − 1))

]ν
∆ log(lj + sj) = ν [−χ+ ∆ log λj ] + ν∆ logwhj(1− τ ′j)

∆ log(lj + sj) = ν [−χ− log β(1 + r(1− τ cap))] + ν∆ logwhj(1− τ ′j)

The last equation above suggests that the human capital model is similar to the exogenous wage model, con-

sidered by MaCurdy (1981) and many others, in that the regression coefficient that comes from regressing a

particular measure of “hours” growth on a very specific measure of “wage” growth is, at least in principle,

a way of estimating the model parameter ν. This holds within the model only when the hours measure is

the sum of model work time and model learning time (hoursj = lj + sj) and only when the wage measure is

wagej = ej(1− τ ′j)/lj = whj(1− τ ′j). Thus, the hours measure lj +sj on the left-hand side of the equation must

differ from the hours measure lj used to calculate the “wage” measure used on the right-hand side. Clearly,

this is not consistent with the practice in the empirical literature. Thus, even if borrowing constraints, idiosyn-

cratic risk and progressive taxation were not present, the standard regression approach in the literature does

not produce an unbiased estimate of the model parameter ν when the theoretical model is the human capital

model.

Table 3 shows a number of regularities. First, the regression coefficient for the 25-55 age group in the first row

is positive but well below the value of ν = 0.551 in the human capital model. Second, the regression coefficient

for any age group increases as the wage measure better approximates the wage concept relevant in the human

capital model. One reason for this is that the growth in the baseline wage measure (earnings divided by total
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labor hours) exceeds the growth of human capital over the lifetime. Figure 5 highlighted this point.19 Another

reason for this is that changing marginal tax rates are taken into account. Third, even in row 3, where the

measures for log hours and log wage changes used are the relevant ones from the perspective of theory and IV

techniques are applied, the regression coefficient is still less than half the value of ν. Domeij and Floden (2006)

argue that in exogenous-wage models standard estimation procedures are biased downward. They demonstrate

a downward bias due to borrowing constraints and approximation error of the intertemporal Euler equation.

When we include in the estimation only agents with substantial assets (more than one quarter of mean assets),

then all regression coefficients in Table 3 increase markedly but still remain below the value of ν. Domeij and

Floden (2006) find in PSID data that the regression coefficient increases markedly when the sample is restricted

to eliminate individuals with low asset holdings.

B.4 Longer-Run Elasticity

The elasticity of taxable income literature acknowledges that comparing measured income a year before and a

year after a tax reform may be misleading because the relevant response for policy is the long-run response. One

approach to estimate a longer-run elasticity is to use the Gruber and Saez (2002) regression equation but to

measure income and net-of-tax rate changes over a longer horizon. For example, Auten, Carroll and Gee (2008)

consider three-year and five-year differences, while Giertz (2010) considers one, three and six-year differences.

We follow this approach below.

Another approach, used by Goolsbee (2000), argues that some of the measured response may be due to income

shifting across years when there is advanced information of a pending reform and provides evidence for such

income shifting. As advanced information is not a problem in the model, we will not pursue the modifications

of the regression equation suggested by the work of Goolsbee (2000).

Table B1 estimates the regression equation below using k = 1, 3 and 6 year horizons. The regression and

instrument specification follows those in Giertz (2010 Table 2, row A).

log

(
zit+k
zit

)
= ε log

(
1− τt+k(zit+k)

1− τt(zit)

)
+ βf(zit) + αt +X ′iγ + νit+k (1)

The regression equation is a straightforward extension of the regression equation from section 6. The instrument

specification is analogous to that used in column (6) of our Table 6. It consists of the counterfactual growth

log
(

1−τt+k(zPit+k)
1−τt(zit)

)
of the marginal net of tax rate between t and t+ k. Here zPit+k equals zit times the growth

factor of average earnings in the sample between t and t+k so that earnings are assumed to be constant relative

to trend. Columns (4)-(6) of Table B1 report estimations that include a fourth-order polynomial in age in the

term Xi and use a weighted estimator where weights are equal to current earnings zit. These practices are

advocated by Giertz (2010).

The specification in column (1) of Table B1 resembles the specification used in column (6) of Table 6 in that age

controls are not used and earnings weighting is not used. However, the estimates differ because the instrument

used in column (1) of Table B1 is based on predicted future earnings zPit+1 while previously earnings zit+1 were

replaced with zit.

19This logic for why the regression coefficient is lower than the utility function parameter ν is not new but
it may be under appreciated. Imai and Keane (2004) and Keane and Rogerson (2012) make this point using a
human capital model with learning by doing. Wallenius (2011) makes this point using a human capital model
that is closer to our framework.
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Table B1 - Longer-Run Elasticity Estimates

(a) Endogenous Human Capital Model

(1) (2) (3) (4) (5) (6)
Mean Elasticity ε 0.1998 0.1114 -0.0250 0.2405 0.1647 -0.1750
S.D. (0.0223) (0.0392) (0.0606) (0.0290) (0.0492) (0.0781)
Difference order (k) 1 3 6 1 3 6
Age Polynomial no no no yes yes yes
zit Weights no no no yes yes yes
Long-run Model Elasticity ε1 0.396 0.396 0.396 0.396 0.396 0.396

(b) Exogenous Human Capital Model

(1) (2) (3) (4) (5) (6)
Mean Elasticity ε 0.2053 0.1199 -0.0237 0.2279 0.1571 -0.1706
S.D. (0.0228) (0.0320) (0.0603) (0.0269) (0.0430) (0.0770)
Difference order (k) 1 3 6 1 3 6
Age Polynomial no no no yes yes yes
zit Weights no no no yes yes yes
Long-run Model Elasticity ε1 0.240 0.240 0.240 0.240 0.240 0.240

Notes : (1) All regressions include time effects and income control f(zit) = ln(zit). (2) We draw 100 balanced
panel data sets of 30,000 agents following the procedure from Table 6. (3) We report means and standard
deviations of the point estimates of ε across 100 randomly drawn balanced panels.
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